Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.
Nat Commun. 2023 Nov 14;14(1):7367. doi: 10.1038/s41467-023-43256-5.
Identifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.
鉴定空间变异基因(SVGs)对于将分子细胞功能与组织表型联系起来至关重要。空间分辨转录组学以二维或三维的方式获取具有相应空间坐标的细胞水平基因表达信息,可有效用于推断 SVGs。然而,目前的计算方法可能无法获得可靠的结果,并且通常无法处理三维空间转录组学数据。在这里,我们介绍 BSP(大-小补丁),这是一种通过比较两种空间粒度的基因表达模式来识别二维或三维空间转录组学数据中 SVGs 的非参数模型,它能够快速、稳健地实现这一目标。该方法已在模拟中得到广泛验证,具有更高的准确性、稳健性和高效率。BSP 还通过各种类型的空间转录组学技术在癌症、神经科学、类风湿关节炎和肾脏研究中的有充分依据的生物学发现得到了进一步验证。