Suppr超能文献

测量应用于流行病学的现象学增长模型之间的差异。

Measuring differences between phenomenological growth models applied to epidemiology.

机构信息

CI(2)MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.

School of Public Health, Georgia State University, Atlanta, GA, USA; Simon A. Levin Mathematical and Computational Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA; Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Math Biosci. 2021 Apr;334:108558. doi: 10.1016/j.mbs.2021.108558. Epub 2021 Feb 8.

Abstract

Phenomenological growth models (PGMs) provide a framework for characterizing epidemic trajectories, estimating key transmission parameters, gaining insight into the contribution of various transmission pathways, and providing long-term and short-term forecasts. Such models only require a small number of parameters to describe epidemic growth patterns. They can be expressed by an ordinary differential equation (ODE) of the type C(t)=f(t,C;Θ) for t>0, C(0)=C, where t is time, C(t) is the total size of the epidemic (the cumulative number of cases) at time t, C is the initial number of cases, f is a model-specific incidence function, and Θ is a vector of parameters. The current COVID-19 pandemic is a scenario for which such models are of obvious importance. In Bürger et al. (2019) it is demonstrated that some PGMs are better at fitting data of specific epidemic outbreaks than others even when the models have the same number of parameters. This situation motivates the need to measure differences in the dynamics that two different models are capable of generating. The present work contributes to a systematic study of differences between PGMs and how these may explain the ability of certain models to provide a better fit to data than others. To this end a so-called empirical directed distance (EDD) is defined to describe the differences in the dynamics between different dynamic models. The EDD of one PGM from another one quantifies how well the former fits data generated by the latter. The concept of EDD is, however, not symmetric in the usual sense of metric spaces. The procedure of calculating EDDs is applied to synthetic data and real data from influenza, Ebola, and COVID-19 outbreaks.

摘要

现象学增长模型(PGM)为描述疫情轨迹、估计关键传播参数、深入了解各种传播途径的贡献以及提供长期和短期预测提供了一个框架。这种模型只需要少量的参数来描述疫情的增长模式。它们可以用一个常微分方程(ODE)来表示,其形式为 C(t)=f(t,C;Θ),其中 t 是时间,C(t)是疫情总规模(累计病例数)在时间 t 时的值,C 是初始病例数,f 是特定模型的发病函数,Θ 是参数向量。当前的 COVID-19 大流行就是这种模型具有明显重要性的一个场景。在 Bürger 等人(2019)的研究中,证明了即使模型具有相同数量的参数,一些 PGM 在拟合特定疫情爆发的数据方面比其他模型更好。这种情况促使我们需要衡量两个不同模型在生成动力学方面的差异。本工作对 PGM 之间的差异以及这些差异如何解释某些模型比其他模型更能拟合数据的原因进行了系统研究。为此,定义了所谓的经验定向距离(EDD)来描述不同动态模型之间的动力学差异。一个 PGM 与另一个 PGM 的 EDD 量化了前者拟合后者生成的数据的程度。然而,EDD 的概念在通常的度量空间意义上不是对称的。计算 EDD 的过程应用于来自流感、埃博拉和 COVID-19 疫情的合成数据和真实数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae7c/8054577/10751c54d006/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验