CI[Formula: see text]MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile.
School of Public Health, Georgia State University, Atlanta, GA, USA.
J Biol Dyn. 2023 Dec;17(1):2256774. doi: 10.1080/17513758.2023.2256774.
A computational approach is adapted to analyze the parameter identifiability of a compartmental model. The model is intended to describe the progression of the COVID-19 pandemic in Chile during the initial phase in early 2020 when government declared quarantine measures. The computational approach to analyze the structural and practical identifiability is applied in two parts, one for synthetic data and another for some Chilean regional data. The first part defines the identifiable parameter sets when these recover the true parameters used to create the synthetic data. The second part compares the results derived from synthetic data, estimating the identifiable parameter sets from regional Chilean epidemic data. Experiments provide evidence of the loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods.
采用计算方法分析了一个房室模型的参数可识别性。该模型旨在描述 2020 年初智利在政府宣布隔离措施时 COVID-19 大流行的初始阶段的进展情况。分析结构和实际可识别性的计算方法分为两部分,一部分用于合成数据,另一部分用于智利一些地区的数据。第一部分定义了可识别参数集,即这些参数集可以恢复用于创建合成数据的真实参数。第二部分比较了从合成数据中得出的结果,从智利地区的传染病数据中估计可识别参数集。实验表明,如果估计了一些初始条件,拟合时间在高峰期之前,并且如果很大一部分人口处于隔离期,那么可识别性就会丧失。