Suppr超能文献

新冠病毒病死亡曲线建模及干预策略的有效性

Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies.

作者信息

Vasconcelos Giovani L, Macêdo Antônio M S, Ospina Raydonal, Almeida Francisco A G, Duarte-Filho Gerson C, Brum Arthur A, Souza Inês C L

机构信息

Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.

Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.

出版信息

PeerJ. 2020 Jun 23;8:e9421. doi: 10.7717/peerj.9421. eCollection 2020.

Abstract

The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.

摘要

本文的主要目标有两个

其一,对新冠疫情的死亡曲线进行建模,以死亡累计数作为时间的函数来表示;其二,使用相应的数学模型来研究可能的干预策略的有效性。我们将理查兹增长模型(RGM)应用于几个国家的新冠死亡曲线,其中使用了约翰·霍普金斯大学数据库截至2020年5月8日的数据。选择用RGM进行分析的国家有中国、法国、德国、伊朗、意大利、韩国和西班牙。结果表明,RGM能很好地描述处于新冠疫情后期的中国以及其他上述国家(据推测在撰写本文时处于疫情中期或接近尾声)的死亡曲线。我们还分析了处于初始次指数增长阶段的巴西的情况,因此使用了更适合此类情况的广义增长模型。推导了RGM背景下干预策略效率的解析公式。我们的研究结果表明,在疫情爆发后,只有一个狭窄的机会窗口,在此期间可以采取有效的应对措施。我们将干预模型应用于意大利疫情爆发时的新冠死亡曲线,以说明几种可能干预措施的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b5/7319030/072a1caf9ed4/peerj-08-9421-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验