Suppr超能文献

一种易于使用的公共卫生驱动方法(广义逻辑斯蒂微分方程模型)准确模拟了武汉的 COVID-19 疫情,并正确确定了预警时间。

An Easy-to-Use Public Health-Driven Method (the Generalized Logistic Differential Equation Model) Accurately Simulated COVID-19 Epidemic in Wuhan and Correctly Determined the Early Warning Time.

机构信息

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.

Department of Infection Disease Control and Prevention, Xi'an Center for Disease Prevention and Control, Xi'an, China.

出版信息

Front Public Health. 2022 Mar 7;10:813860. doi: 10.3389/fpubh.2022.813860. eCollection 2022.

Abstract

INTRODUCTION

Modeling on infectious diseases is significant to facilitate public health policymaking. There are two main mathematical methods that can be used for the simulation of the epidemic and prediction of optimal early warning timing: the logistic differential equation (LDE) model and the more complex generalized logistic differential equation (GLDE) model. This study aimed to compare and analyze these two models.

METHODS

We collected data on (coronavirus disease 2019) COVID-19 and four other infectious diseases and classified the data into four categories: different transmission routes, different epidemic intensities, different time scales, and different regions, using to compare and analyze the goodness-of-fit of LDE and GLDE models.

RESULTS

Both models fitted the epidemic curves well, and all results were statistically significant. The test value of COVID-19 was 0.924 ( < 0.001) fitted by the GLDE model and 0.916 ( < 0.001) fitted by the LDE model. The test value varied between 0.793 and 0.966 fitted by the GLDE model and varied between 0.594 and 0.922 fitted by the LDE model for diseases with different transmission routes. The test values varied between 0.853 and 0.939 fitted by the GLDE model and varied from 0.687 to 0.769 fitted by the LDE model for diseases with different prevalence intensities. The test value varied between 0.706 and 0.917 fitted by the GLDE model and varied between 0.410 and 0.898 fitted by the LDE model for diseases with different time scales. The GLDE model also performed better with nation-level data with the test values between 0.897 and 0.970 vs. 0.731 and 0.953 that fitted by the LDE model. Both models could characterize the patterns of the epidemics well and calculate the acceleration weeks.

CONCLUSION

The GLDE model provides more accurate goodness-of-fit to the data than the LDE model. The GLDE model is able to handle asymmetric data by introducing shape parameters that allow it to fit data with various distributions. The LDE model provides an earlier epidemic acceleration week than the GLDE model. We conclude that the GLDE model is more advantageous in asymmetric infectious disease data simulation.

摘要

简介

对传染病进行建模对于促进公共卫生决策制定具有重要意义。有两种主要的数学方法可用于模拟传染病并预测最佳预警时机:逻辑微分方程(LDE)模型和更复杂的广义逻辑微分方程(GLDE)模型。本研究旨在对这两种模型进行比较和分析。

方法

我们收集了(2019 年冠状病毒病)COVID-19 及其他四种传染病的数据,并将数据分为四类:不同的传播途径、不同的流行强度、不同的时间尺度和不同的地区,使用赤池信息量准则(AIC)来比较和分析 LDE 和 GLDE 模型的拟合优度。

结果

两种模型都很好地拟合了传染病曲线,所有结果均具有统计学意义。GLDE 模型拟合的 COVID-19 的赤池信息量准则(AIC)检验值为 0.924(<0.001),LDE 模型拟合的为 0.916(<0.001)。GLDE 模型拟合不同传播途径传染病的 AIC 检验值在 0.793 到 0.966 之间,LDE 模型拟合的在 0.594 到 0.922 之间。GLDE 模型拟合不同流行强度传染病的 AIC 检验值在 0.853 到 0.939 之间,LDE 模型拟合的在 0.687 到 0.769 之间。GLDE 模型拟合不同时间尺度传染病的 AIC 检验值在 0.706 到 0.917 之间,LDE 模型拟合的在 0.410 到 0.898 之间。GLDE 模型还对国家级数据的拟合效果更好,AIC 检验值在 0.897 到 0.970 之间,而 LDE 模型拟合的在 0.731 到 0.953 之间。两种模型都能很好地描述传染病的模式并计算出加速周。

结论

GLDE 模型比 LDE 模型提供了更准确的拟合优度。GLDE 模型通过引入形状参数,可以处理不对称数据,从而拟合具有各种分布的数据。LDE 模型比 GLDE 模型更早地预测出传染病的加速周。我们得出结论,GLDE 模型在模拟不对称传染病数据方面更具优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5f/8936678/a180b1582787/fpubh-10-813860-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验