Suppr超能文献

基于深度学习的语义分割方法在心脏毒性的基于 MRI 的左心室变形分析中的全自动应用。

A deep-learning semantic segmentation approach to fully automated MRI-based left-ventricular deformation analysis in cardiotoxicity.

机构信息

Departments of Mechanical Engineering and Pharmacology, University of South Alabama, 150 Jaguar Drive, Mobile, AL 36688, United States of America.

Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States of America.

出版信息

Magn Reson Imaging. 2021 May;78:127-139. doi: 10.1016/j.mri.2021.01.005. Epub 2021 Feb 8.

Abstract

Left-ventricular (LV) strain measurements with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence provide accurate estimates of cardiotoxicity damage related to breast cancer chemotherapy. This study investigated an automated LV chamber quantification tool via segmentation with a supervised deep convolutional neural network (DCNN) before strain analysis with DENSE images. Segmentation for chamber quantification analysis was conducted with a custom DeepLabV3+ DCNN with ResNet-50 backbone on 42 female breast cancer datasets (22 training-sets, eight validation-sets and 12 independent test-sets). Parameters such as LV end-diastolic diameter (LVEDD) and ejection fraction (LVEF) were quantified, and myocardial strains analyzed with the Radial Point Interpolation Method (RPIM). Myocardial classification was validated against ground-truth with sensitivity-specificity analysis, the metrics of Dice, average perpendicular distance (APD) and Hausdorff-distance. Following segmentation, validation was conducted with the Cronbach's Alpha (C-Alpha) intraclass correlation coefficient between LV chamber quantification results with DENSE and Steady State Free Precession (SSFP) acquisitions and a vendor tool-based method to segment the DENSE data, and similarly for myocardial strain analysis in the chambers. The results of myocardial classification from segmentation of the DENSE data were accuracy = 97%, Dice = 0.89 and APD = 2.4 mm in the test-set. The C-Alpha correlations from comparing chamber quantification results between the segmented DENSE and SSFP data and vendor tool-based method were 0.97 for LVEF (56 ± 7% vs 55 ± 7% vs 55 ± 6%, p = 0.6) and 0.77 for LVEDD (4.6 ± 0.4 cm vs 4.5 ± 0.3 cm vs 4.5 ± 0.3 cm, p = 0.8). The validation metrics against ground-truth and equivalent parameters obtained from the SSFP segmentation and vendor tool-based comparisons show that the DCNN approach is applicable for automated LV chamber quantification and subsequent strain analysis in cardiotoxicity.

摘要

左心室(LV)应变测量与位移编码激励回波(DENSE)MRI 序列相结合,可以准确估计乳腺癌化疗相关的心脏毒性损伤。本研究通过 DENSE 图像应变分析前的分割,研究了一种自动化 LV 室量化工具。通过具有 ResNet-50 主干的自定义 DeepLabV3+DCNN 对 42 例女性乳腺癌数据集(22 个训练集、8 个验证集和 12 个独立测试集)进行了腔室量化分析。定量了 LV 舒张末期直径(LVEDD)和射血分数(LVEF)等参数,并采用径向点插值法(RPIM)分析心肌应变。通过敏感性特异性分析对心肌分类进行了验证,并与 ground-truth 进行了比较,评估指标包括 Dice、平均垂直距离(APD)和 Hausdorff 距离。分割后,通过 DENSE 和稳态自由进动(SSFP)采集的 LV 腔量化结果与 Cronbach's Alpha(C-Alpha)内类相关系数、基于供应商工具的 DENSE 数据分割方法以及心肌应变分析进行了验证。在测试集中,DENSE 数据分割的心肌分类结果的准确性为 97%,Dice 为 0.89,APD 为 2.4mm。比较分割后的 DENSE 和 SSFP 数据与基于供应商工具的方法之间腔量化结果的 C-Alpha 相关性,LVEF 的相关性为 0.97(56±7%vs55±7%vs55±6%,p=0.6),LVEDD 的相关性为 0.77(4.6±0.4cm vs 4.5±0.3cm vs 4.5±0.3cm,p=0.8)。与 ground-truth 和从 SSFP 分割和基于供应商工具的比较获得的等效参数的验证指标表明,DCNN 方法适用于自动化 LV 室量化和随后的心脏毒性应变分析。

相似文献

1
A deep-learning semantic segmentation approach to fully automated MRI-based left-ventricular deformation analysis in cardiotoxicity.
Magn Reson Imaging. 2021 May;78:127-139. doi: 10.1016/j.mri.2021.01.005. Epub 2021 Feb 8.
3
Automated segmentation of the left-ventricle from MRI with a fully convolutional network to investigate CTRCD in breast cancer patients.
J Med Imaging (Bellingham). 2024 Mar;11(2):024003. doi: 10.1117/1.JMI.11.2.024003. Epub 2024 Mar 19.
6
Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network.
J Biomech. 2022 Jan;130:110878. doi: 10.1016/j.jbiomech.2021.110878. Epub 2021 Nov 27.
7
9
Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI.
J Cardiovasc Magn Reson. 2024 Summer;26(1):100003. doi: 10.1016/j.jocmr.2023.100003. Epub 2024 Jan 10.
10
Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
Biomed Phys Eng Express. 2020 Feb 18;6(2):025009. doi: 10.1088/2057-1976/ab7363.

引用本文的文献

4
Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review.
Curr Cardiol Rep. 2025 Feb 19;27(1):56. doi: 10.1007/s11886-025-02215-w.
5
Machine Learning in Cardio-Oncology: New Insights from an Emerging Discipline.
Rev Cardiovasc Med. 2023 Oct 19;24(10):296. doi: 10.31083/j.rcm2410296. eCollection 2023 Oct.
7
Automated extraction of pod phenotype data from micro-computed tomography.
Front Plant Sci. 2023 Feb 24;14:1120182. doi: 10.3389/fpls.2023.1120182. eCollection 2023.
9
Automated Detection of Corneal Ulcer Using Combination Image Processing and Deep Learning.
Diagnostics (Basel). 2022 Dec 17;12(12):3204. doi: 10.3390/diagnostics12123204.
10
Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network.
J Biomech. 2022 Jan;130:110878. doi: 10.1016/j.jbiomech.2021.110878. Epub 2021 Nov 27.

本文引用的文献

1
Machine Learning Approaches for Myocardial Motion and Deformation Analysis.
Front Cardiovasc Med. 2020 Jan 9;6:190. doi: 10.3389/fcvm.2019.00190. eCollection 2019.
2
4
Cancer Therapy-Related Cardiac Dysfunction: An Overview for the Clinician.
Clin Med Insights Cardiol. 2019 Jul 29;13:1179546819866445. doi: 10.1177/1179546819866445. eCollection 2019.
5
Switchable Normalization for Learning-to-Normalize Deep Representation.
IEEE Trans Pattern Anal Mach Intell. 2021 Feb;43(2):712-728. doi: 10.1109/TPAMI.2019.2932062. Epub 2021 Jan 8.
7
A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images.
JACC Cardiovasc Imaging. 2020 Feb;13(2 Pt 1):374-381. doi: 10.1016/j.jcmg.2019.02.024. Epub 2019 May 15.
8
Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI.
Radiology. 2019 Jun;291(3):606-617. doi: 10.1148/radiol.2019182304. Epub 2019 Apr 30.
9
Deep learning cardiac motion analysis for human survival prediction.
Nat Mach Intell. 2019 Feb 11;1:95-104. doi: 10.1038/s42256-019-0019-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验