文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小儿低级别胶质瘤的放射组学:向突变和融合肿瘤的治疗前鉴别迈进。

Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of Mutated and -Fused Tumors.

机构信息

From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)

From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.).

出版信息

AJNR Am J Neuroradiol. 2021 Apr;42(4):759-765. doi: 10.3174/ajnr.A6998. Epub 2021 Feb 11.


DOI:10.3174/ajnr.A6998
PMID:33574103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8040992/
Abstract

BACKGROUND AND PURPOSE: () status has important implications for prognosis and therapy of pediatric low-grade gliomas. Currently, status classification relies on biopsy. Our aim was to train and validate a radiomics approach to predict fusion and V600E mutation. MATERIALS AND METHODS: In this bi-institutional retrospective study, FLAIR MR imaging datasets of 115 pediatric patients with low-grade gliomas from 2 children's hospitals acquired between January 2009 and January 2016 were included and analyzed. Radiomics features were extracted from tumor segmentations, and the predictive model was tested using independent training and testing datasets, with all available tumor types. The model was selected on the basis of a grid search on the number of trees, opting for the best split for a random forest. We used the area under the receiver operating characteristic curve to evaluate model performance. RESULTS: The training cohort consisted of 94 pediatric patients with low-grade gliomas (mean age, 9.4 years; 45 boys), and the external validation cohort comprised 21 pediatric patients with low-grade gliomas (mean age, 8.37 years; 12 boys). A 4-fold cross-validation scheme predicted status with an area under the curve of 0.75 (SD, 0.12) (95% confidence interval, 0.62-0.89) on the internal validation cohort. By means of the optimal hyperparameters determined by 4-fold cross-validation, the area under the curve for the external validation was 0.85. Age and tumor location were significant predictors of status ( values = .04 and <.001, respectively). Sex was not a significant predictor ( value = .96). CONCLUSIONS: Radiomics-based prediction of status in pediatric low-grade gliomas appears feasible in this bi-institutional exploratory study.

摘要

背景与目的:()状态对小儿低级别胶质瘤的预后和治疗具有重要意义。目前,()状态分类依赖于活检。我们的目的是训练和验证一种放射组学方法来预测()融合和()V600E 突变。

材料与方法:在这项双机构回顾性研究中,纳入了来自 2 家儿童医院的 115 例小儿低级别胶质瘤患者的 FLAIR MR 成像数据集,这些患者均在 2009 年 1 月至 2016 年 1 月期间采集。从肿瘤分割中提取放射组学特征,并使用独立的训练和测试数据集对预测模型进行测试,包括所有可用的肿瘤类型。该模型是基于随机森林的最佳分割进行树数量的网格搜索选择的。我们使用接收者操作特征曲线下的面积来评估模型性能。

结果:训练队列包括 94 例小儿低级别胶质瘤患者(平均年龄为 9.4 岁,45 例为男性),外部验证队列包括 21 例小儿低级别胶质瘤患者(平均年龄为 8.37 岁,12 例为男性)。在内部验证队列中,采用 4 折交叉验证方案预测()状态,曲线下面积为 0.75(标准差,0.12)(95%置信区间,0.62-0.89)。通过 4 折交叉验证确定的最佳超参数,外部验证的曲线下面积为 0.85。年龄和肿瘤位置是()状态的显著预测因素(值分别为<.001 和<.04)。性别不是显著的预测因素(值为.96)。

结论:在这项双机构探索性研究中,基于放射组学的小儿低级别胶质瘤()状态预测似乎是可行的。

相似文献

[1]
Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of Mutated and -Fused Tumors.

AJNR Am J Neuroradiol. 2021-4

[2]
Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: A non-invasive method for molecular diagnosis.

Clin Neurol Neurosurg. 2022-11

[3]
T2-FLAIR Mismatch Sign in Pediatric Low-Grade Glioma.

AJNR Am J Neuroradiol. 2023-7

[4]
Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.

AJNR Am J Neuroradiol. 2024-6-7

[5]
MR Imaging of Pediatric Low-Grade Gliomas: Pretherapeutic Differentiation of V600E Mutation, Fusion, and Wild-Type Tumors in Patients without Neurofibromatosis-1.

AJNR Am J Neuroradiol. 2022-8

[6]
MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas.

AJNR Am J Neuroradiol. 2022-9

[7]
[Clinicopathological and molecular characteristics of pediatric gliomas: analysis of 111 cases].

Zhonghua Bing Li Xue Za Zhi. 2024-9-8

[8]
Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.

Radiol Artif Intell. 2024-5

[9]
Increased confidence of radiomics facilitating pretherapeutic differentiation of BRAF-altered pediatric low-grade glioma.

Eur Radiol. 2024-4

[10]
Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas.

J Neurooncol. 2018-8-10

引用本文的文献

[1]
Open-radiomics: a collection of standardized datasets and a technical protocol for reproducible radiomics machine learning pipelines.

BMC Med Imaging. 2025-8-4

[2]
Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children.

Cancer Imaging. 2025-5-19

[3]
Radiological Predictors of Cognitive Impairment in Paediatric Brain Tumours Using Multiparametric Magnetic Resonance Imaging: A Review of Current Practice, Challenges and Future Directions.

Cancers (Basel). 2025-3-11

[4]
Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nat Commun. 2025-1-2

[5]
Emerging paradigm: Molecularly targeted therapy with Dabrafenib and Trametinib in recurring pediatric gliomas with BRAF mutations: A narrative review.

Medicine (Baltimore). 2024-12-6

[6]
Advanced imaging techniques and non-invasive biomarkers in pediatric brain tumors: state of the art.

Neuroradiology. 2024-12

[7]
Multimodal deep learning improves recurrence risk prediction in pediatric low-grade gliomas.

Neuro Oncol. 2025-1-12

[8]
Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Sci Rep. 2024-8-17

[9]
Early prognostication of overall survival for pediatric diffuse midline gliomas using MRI radiomics and machine learning: A two-center study.

Neurooncol Adv. 2024-6-28

[10]
Applications of machine learning to MR imaging of pediatric low-grade gliomas.

Childs Nerv Syst. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索