From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.).
AJNR Am J Neuroradiol. 2021 Apr;42(4):759-765. doi: 10.3174/ajnr.A6998. Epub 2021 Feb 11.
BACKGROUND AND PURPOSE: () status has important implications for prognosis and therapy of pediatric low-grade gliomas. Currently, status classification relies on biopsy. Our aim was to train and validate a radiomics approach to predict fusion and V600E mutation. MATERIALS AND METHODS: In this bi-institutional retrospective study, FLAIR MR imaging datasets of 115 pediatric patients with low-grade gliomas from 2 children's hospitals acquired between January 2009 and January 2016 were included and analyzed. Radiomics features were extracted from tumor segmentations, and the predictive model was tested using independent training and testing datasets, with all available tumor types. The model was selected on the basis of a grid search on the number of trees, opting for the best split for a random forest. We used the area under the receiver operating characteristic curve to evaluate model performance. RESULTS: The training cohort consisted of 94 pediatric patients with low-grade gliomas (mean age, 9.4 years; 45 boys), and the external validation cohort comprised 21 pediatric patients with low-grade gliomas (mean age, 8.37 years; 12 boys). A 4-fold cross-validation scheme predicted status with an area under the curve of 0.75 (SD, 0.12) (95% confidence interval, 0.62-0.89) on the internal validation cohort. By means of the optimal hyperparameters determined by 4-fold cross-validation, the area under the curve for the external validation was 0.85. Age and tumor location were significant predictors of status ( values = .04 and <.001, respectively). Sex was not a significant predictor ( value = .96). CONCLUSIONS: Radiomics-based prediction of status in pediatric low-grade gliomas appears feasible in this bi-institutional exploratory study.
背景与目的:()状态对小儿低级别胶质瘤的预后和治疗具有重要意义。目前,()状态分类依赖于活检。我们的目的是训练和验证一种放射组学方法来预测()融合和()V600E 突变。
材料与方法:在这项双机构回顾性研究中,纳入了来自 2 家儿童医院的 115 例小儿低级别胶质瘤患者的 FLAIR MR 成像数据集,这些患者均在 2009 年 1 月至 2016 年 1 月期间采集。从肿瘤分割中提取放射组学特征,并使用独立的训练和测试数据集对预测模型进行测试,包括所有可用的肿瘤类型。该模型是基于随机森林的最佳分割进行树数量的网格搜索选择的。我们使用接收者操作特征曲线下的面积来评估模型性能。
结果:训练队列包括 94 例小儿低级别胶质瘤患者(平均年龄为 9.4 岁,45 例为男性),外部验证队列包括 21 例小儿低级别胶质瘤患者(平均年龄为 8.37 岁,12 例为男性)。在内部验证队列中,采用 4 折交叉验证方案预测()状态,曲线下面积为 0.75(标准差,0.12)(95%置信区间,0.62-0.89)。通过 4 折交叉验证确定的最佳超参数,外部验证的曲线下面积为 0.85。年龄和肿瘤位置是()状态的显著预测因素(值分别为<.001 和<.04)。性别不是显著的预测因素(值为.96)。
结论:在这项双机构探索性研究中,基于放射组学的小儿低级别胶质瘤()状态预测似乎是可行的。
AJNR Am J Neuroradiol. 2021-4
AJNR Am J Neuroradiol. 2023-7
Zhonghua Bing Li Xue Za Zhi. 2024-9-8
Radiol Artif Intell. 2024-5
Childs Nerv Syst. 2024-10