Suppr超能文献

能否通过常规血液检测来建立模型以在社区中检测晚期肝病:利用英国初级和二级医疗数据进行模型推导与验证

Can routine blood tests be modelled to detect advanced liver disease in the community: model derivation and validation using UK primary and secondary care data.

作者信息

Hydes Theresa, Moore Michael, Stuart Beth, Kim Miranda, Su Fangzhong, Newell Colin, Cable David, Hales Alan, Sheron Nick

机构信息

School of Primary Care and Population Sciences, University of Southampton, Southampton, Hampshire, UK.

Human Development and Health, University of Southampton Faculty of Medicine, Southampton, Southampton, UK.

出版信息

BMJ Open. 2021 Feb 11;11(2):e044952. doi: 10.1136/bmjopen-2020-044952.

Abstract

OBJECTIVES

Most patients are unaware they have liver cirrhosis until they present with a decompensating event. We therefore aimed to develop and validate an algorithm to predict advanced liver disease (AdvLD) using data widely available in primary care.

DESIGN, SETTING AND PARTICIPANTS: Logistic regression was performed on routinely collected blood result data from the University Hospital Southampton (UHS) information systems for 16 967 individuals who underwent an upper gastrointestinal endoscopy (2005-2016). Data were used to create a model aimed at detecting AdvLD: 'CIRRhosis Using Standard tests' (CIRRUS). Prediction of a first serious liver event (SLE) was then validated in two cohorts of 394 253 (UHS: primary and secondary care) and 183 045 individuals (Care and Health Information Exchange (CHIE): primary care).

PRIMARY OUTCOME MEASURES

Model creation dataset: cirrhosis or portal hypertension. Validation datasets: SLE (gastro-oesophageal varices, liver-related ascites or cirrhosis).

RESULTS

In the model creation dataset, 931 SLEs were recorded (5.5%). CIRRUS detected cirrhosis or portal hypertension with an area under the curve (AUC) of 0.90 (95% CI 0.88 to 0.92). Overall, 3044 (0.8%) and 1170 (0.6%) SLEs were recorded in the UHS and CHIE validation cohorts, respectively. In the UHS cohort, CIRRUS predicted a first SLE within 5 years with an AUC of 0.90 (0.89 to 0.91) continuous, 0.88 (0.87 to 0.89) categorised (crimson, red, amber, green grades); and AUC 0.84 (0.82 to 0.86) and 0.83 (0.81 to 0.85) for the CHIE cohort. In patients with a specified liver risk factor (alcohol, diabetes, viral hepatitis), a crimson/red cut-off predicted a first SLE with a sensitivity of 72%/59%, specificity 87%/93%, positive predictive value 26%/18% and negative predictive value 98%/99% for the UHS/CHIE validation cohorts, respectively.

CONCLUSION

Identification of individuals at risk of AdvLD within primary care using routinely available data may provide an opportunity for earlier intervention and prevention of liver-related morbidity and mortality.

摘要

目的

大多数患者在出现失代偿事件之前并不知道自己患有肝硬化。因此,我们旨在开发并验证一种算法,利用基层医疗中广泛可用的数据来预测晚期肝病(AdvLD)。

设计、背景和参与者:对从南安普敦大学医院(UHS)信息系统常规收集的16967例接受上消化道内镜检查(2005 - 2016年)患者的血液检测结果数据进行逻辑回归分析。这些数据用于创建一个旨在检测AdvLD的模型:“使用标准检测方法的肝硬化(CIRRhosis Using Standard tests,CIRRUS)”。然后在两个队列中验证首次严重肝脏事件(SLE)的预测情况,一个队列有394253例患者(UHS:基层和二级医疗),另一个队列有183045例患者(医疗与健康信息交换系统(CHIE):基层医疗)。

主要结局指标

模型创建数据集:肝硬化或门静脉高压。验证数据集:SLE(胃食管静脉曲张、肝源性腹水或肝硬化)。

结果

在模型创建数据集中,记录到931例SLE(5.5%)。CIRRUS检测肝硬化或门静脉高压的曲线下面积(AUC)为0.90(95%CI 0.88至0.92)。总体而言,在UHS和CHIE验证队列中分别记录到3044例(0.8%)和1170例(0.6%)SLE。在UHS队列中,CIRRUS预测5年内首次SLE的AUC为0.90(连续变量,0.89至0.91),分类变量时为0.88(0.87至0.89)(深红色、红色、琥珀色、绿色分级);CHIE队列的AUC分别为0.84(0.82至0.86)和0.83(0.81至0.85)。在具有特定肝脏危险因素(酒精、糖尿病、病毒性肝炎)的患者中,对于UHS/CHIE验证队列,深红色/红色临界值预测首次SLE的灵敏度分别为72%/59%,特异度为87%/93%,阳性预测值为26%/18%,阴性预测值为98%/99%。

结论

利用常规可得数据在基层医疗中识别有AdvLD风险的个体,可能为早期干预以及预防肝脏相关的发病率和死亡率提供机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed94/7925927/3f19ee6ef8fc/bmjopen-2020-044952f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验