Suppr超能文献

代谢和免疫相关基因特征在胰腺癌中的价值及辅助治疗反应

The value of a metabolic and immune-related gene signature and adjuvant therapeutic response in pancreatic cancer.

作者信息

Ni Danlei, Wu Jiayi, Pan Jingjing, Liang Yajing, Xu Zihui, Yan Zhiying, Xu Kequn, Wei Feifei

机构信息

Department of Oncology, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.

出版信息

Front Genet. 2025 Jan 3;15:1475378. doi: 10.3389/fgene.2024.1475378. eCollection 2024.

Abstract

BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal prognosis. Treatment outcomes exhibit substantial variability across patients, underscoring the urgent need for robust predictive models to effectively estimate survival probabilities and therapeutic responses in PDAC.

METHODS

Metabolic and immune-related genes exhibiting differential expression were identified using the TCGA-PDAC and GTEx datasets. A genetic prognostic model was developed via univariable Cox regression analysis on a training cohort. Predictive accuracy was assessed using Kaplan-Meier (K-M) curves, calibration plots, and ROC curves. Additional analyses, including GSAE and immune cell infiltration studies, were conducted to explore relevant biological mechanisms and predict therapeutic efficacy.

RESULTS

An 8-gene prognostic model (AK2, CXCL11, TYK2, ANGPT4, IL20RA, MET, ENPP6, and CA12) was established. Three genes (AK2, ENPP6, and CA12) were associated with metabolism, while the others were immune-related. Most genes correlated with poor prognosis. Validation in TCGA-PDAC and GSE57495 datasets demonstrated robust performance, with AUC values for 1-, 3-, and 5-year OS exceeding 0.7. The model also effectively predicted responses to adjuvant therapy.

CONCLUSION

This 8-gene signature enhances prognostic accuracy and therapeutic decision-making in PDAC, offering valuable insights for clinical applications and personalized treatment strategies.

摘要

背景

胰腺导管腺癌(PDAC)是一种侵袭性很强的恶性肿瘤,预后很差。不同患者的治疗结果差异很大,这突出表明迫切需要强大的预测模型来有效估计PDAC患者的生存概率和治疗反应。

方法

使用TCGA-PDAC和GTEx数据集鉴定出表达存在差异的代谢和免疫相关基因。通过对训练队列进行单变量Cox回归分析,建立了一个基因预后模型。使用Kaplan-Meier(K-M)曲线、校准图和ROC曲线评估预测准确性。进行了包括基因集富集分析(GSAE)和免疫细胞浸润研究在内的其他分析,以探索相关生物学机制并预测治疗效果。

结果

建立了一个包含8个基因的预后模型(AK2、CXCL11、TYK2、ANGPT4、IL20RA、MET、ENPP6和CA12)。其中3个基因(AK2、ENPP6和CA12)与代谢相关,其他基因与免疫相关。大多数基因与不良预后相关。在TCGA-PDAC和GSE57495数据集中的验证表明该模型性能良好,1年、3年和5年总生存期的AUC值超过0.7。该模型还能有效预测辅助治疗的反应。

结论

这个8基因特征增强了PDAC的预后准确性和治疗决策能力,为临床应用和个性化治疗策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec5/11758928/ca00448105b0/fgene-15-1475378-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验