Suppr超能文献

变异致病性预测工具的家族特异性分析。

Family-specific analysis of variant pathogenicity prediction tools.

作者信息

Zaucha Jan, Heinzinger Michael, Tarnovskaya Svetlana, Rost Burkhard, Frishman Dmitrij

机构信息

Department of Bioinformatics, Technical University of Munich, 85354 Freising, Germany.

Department of Informatics, Bioinformatics & Computational Biology-i12, Technical University of Munich, 85748 Garching, Germany.

出版信息

NAR Genom Bioinform. 2020 Feb 28;2(2):lqaa014. doi: 10.1093/nargab/lqaa014. eCollection 2020 Jun.

Abstract

Using the presently available datasets of annotated missense variants, we ran a protein family-specific benchmarking of tools for predicting the pathogenicity of single amino acid variants. We find that despite the high overall accuracy of all tested methods, each tool has its Achilles heel, i.e. protein families in which its predictions prove unreliable (expected accuracy does not exceed 51% in any method). As a proof of principle, we show that choosing the optimal tool and pathogenicity threshold at a protein family-individual level allows obtaining reliable predictions in all Pfam domains (accuracy no less than 68%). A functional analysis of the sets of protein domains annotated exclusively by neutral or pathogenic mutations indicates that specific protein functions can be associated with a high or low sensitivity to mutations, respectively. The highly sensitive sets of protein domains are involved in the regulation of transcription and DNA sequence-specific transcription factor binding, while the domains that do not result in disease when mutated are responsible for mediating immune and stress responses. These results suggest that future predictors of pathogenicity and especially variant prioritization tools may benefit from considering functional annotation.

摘要

利用目前可用的带注释错义变体数据集,我们针对预测单氨基酸变体致病性的工具进行了特定蛋白质家族的基准测试。我们发现,尽管所有测试方法的总体准确率都很高,但每个工具都有其致命弱点,即在某些蛋白质家族中其预测结果不可靠(任何方法的预期准确率都不超过51%)。作为原理验证,我们表明在蛋白质家族个体水平上选择最佳工具和致病性阈值能够在所有 Pfam 结构域中获得可靠的预测结果(准确率不低于68%)。对仅由中性或致病性突变注释的蛋白质结构域集进行功能分析表明,特定的蛋白质功能可能分别与对突变的高敏感性或低敏感性相关。对突变高度敏感的蛋白质结构域集参与转录调控和DNA序列特异性转录因子结合,而突变时不会导致疾病的结构域则负责介导免疫和应激反应。这些结果表明,未来的致病性预测工具,尤其是变异优先级排序工具,可能会从考虑功能注释中受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e6a/7671395/939a93d3edc8/lqaa014fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验