Suppr超能文献

DVPred:一种用于听力损失变异致病性分类的疾病特异性预测工具。

DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss.

作者信息

Bu Fengxiao, Zhong Mingjun, Chen Qinyi, Wang Yumei, Zhao Xia, Zhang Qian, Li Xiarong, Booth Kevin T, Azaiez Hela, Lu Yu, Cheng Jing, Smith Richard J H, Yuan Huijun

机构信息

Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, 610000, China.

Medical Genetics Center, Southwest Hospital, Chongqing, 410078, China.

出版信息

Hum Genet. 2022 Apr;141(3-4):401-411. doi: 10.1007/s00439-022-02440-1. Epub 2022 Feb 19.

Abstract

Numerous computational prediction tools have been introduced to estimate the functional impact of variants in the human genome based on evolutionary constraints and biochemical metrics. However, their implementation in diagnostic settings to classify variants faced challenges with accuracy and validity. Most existing tools are pan-genome and pan-diseases, which neglected gene- and disease-specific properties and limited the accessibility of curated data. As a proof-of-concept, we developed a disease-specific prediction tool named Deafness Variant deleteriousness Prediction tool (DVPred) that focused on the 157 genes reportedly causing genetic hearing loss (HL). DVPred applied the gradient boosting decision tree (GBDT) algorithm to the dataset consisting of expert-curated pathogenic and benign variants from a large in-house HL patient cohort and public databases. With the incorporation of variant-level and gene-level features, DVPred outperformed the existing universal tools. It boasts an area under the curve (AUC) of 0.98, and showed consistent performance (AUC = 0.985) in an independent assessment dataset. We further demonstrated that multiple gene-level metrics, including low complexity genomic regions and substitution intolerance scores, were the top features of the model. A comprehensive analysis of missense variants showed a gene-specific ratio of predicted deleterious and neutral variants, implying varied tolerance or intolerance to variation in different genes. DVPred explored the utility of disease-specific strategy in improving the deafness variant prediction tool. It can improve the prioritization of pathogenic variants among massive variants identified by high-throughput sequencing on HL genes. It also shed light on the development of variant prediction tools for other genetic disorders.

摘要

为了基于进化约束和生化指标来估计人类基因组中变异的功能影响,人们引入了众多计算预测工具。然而,将它们应用于诊断环境以对变异进行分类时,在准确性和有效性方面面临挑战。大多数现有工具是泛基因组和泛疾病的,忽略了基因和疾病特异性属性,并限制了经过整理的数据的可及性。作为概念验证,我们开发了一种名为耳聋变异有害性预测工具(DVPred)的疾病特异性预测工具,该工具专注于据报道会导致遗传性听力损失(HL)的157个基因。DVPred将梯度提升决策树(GBDT)算法应用于由来自大型内部HL患者队列和公共数据库的专家整理的致病性和良性变异组成的数据集。通过纳入变异水平和基因水平的特征,DVPred优于现有的通用工具。它的曲线下面积(AUC)为0.98,并且在独立评估数据集中表现一致(AUC = 0.985)。我们进一步证明,包括低复杂性基因组区域和替代不耐受分数在内的多个基因水平指标是该模型的主要特征。对错义变异的综合分析显示了预测的有害和中性变异的基因特异性比例,这意味着不同基因对变异的耐受或不耐受程度不同。DVPred探索了疾病特异性策略在改进耳聋变异预测工具方面的效用。它可以提高在高通量测序鉴定的大量HL基因变异中致病性变异的优先级。它还为其他遗传疾病的变异预测工具的开发提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验