Department of Ophthalmology, Tsukazaki Hospital, 68-1 Waku, Aboshi-ku, Himeji City, Hyogo, 671-1227, Japan.
Department of Technology and Design Thinking for Medicine, Hiroshima University Graduate School, Hiroshima, Japan.
Graefes Arch Clin Exp Ophthalmol. 2021 Jun;259(6):1569-1577. doi: 10.1007/s00417-021-05078-3. Epub 2021 Feb 12.
We assessed the ability of deep learning (DL) models to distinguish between tear meniscus of lacrimal duct obstruction (LDO) patients and normal subjects using anterior segment optical coherence tomography (ASOCT) images.
The study included 117 ASOCT images (19 men and 98 women; mean age, 66.6 ± 13.6 years) from 101 LDO patients and 113 ASOCT images (29 men and 84 women; mean age, 38.3 ± 19.9 years) from 71 normal subjects. We trained to construct 9 single and 502 ensemble DL models with 9 different network structures, and calculated the area under the curve (AUC), sensitivity, and specificity to compare the distinguishing abilities of these single and ensemble DL models.
For the highest single DL model (DenseNet169), the AUC, sensitivity, and specificity for distinguishing LDO were 0.778, 64.6%, and 72.1%, respectively. For the highest ensemble DL model (VGG16, ResNet50, DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, and Xception), the AUC, sensitivity, and specificity for distinguishing LDO were 0.824, 84.8%, and 58.8%, respectively. The heat maps indicated that these DL models placed their focus on the tear meniscus region of the ASOCT images.
The combination of DL and ASOCT images could distinguish between tear meniscus of LDO patients and normal subjects with a high level of accuracy. These results suggest that DL might be useful for automatic screening of patients for LDO.
我们评估了深度学习(DL)模型使用眼前节光学相干断层扫描(ASOCT)图像区分泪道阻塞(LDO)患者和正常受试者的泪膜半月板的能力。
该研究纳入了 101 例 LDO 患者的 117 例 ASOCT 图像(男性 19 例,女性 98 例;平均年龄 66.6±13.6 岁)和 71 例正常受试者的 113 例 ASOCT 图像(男性 29 例,女性 84 例;平均年龄 38.3±19.9 岁)。我们训练了 9 种不同网络结构的 9 个单模型和 502 个集成 DL 模型,并计算了曲线下面积(AUC)、灵敏度和特异性,以比较这些单模型和集成 DL 模型的区分能力。
对于最高的单个 DL 模型(DenseNet169),区分 LDO 的 AUC、灵敏度和特异性分别为 0.778、64.6%和 72.1%。对于最高的集成 DL 模型(VGG16、ResNet50、DenseNet121、DenseNet169、InceptionResNetV2、InceptionV3 和 Xception),区分 LDO 的 AUC、灵敏度和特异性分别为 0.824、84.8%和 58.8%。热图表明,这些 DL 模型将重点放在 ASOCT 图像的泪膜半月板区域。
DL 与 ASOCT 图像的结合可以高精度地区分 LDO 患者和正常受试者的泪膜半月板。这些结果表明,DL 可能有助于 LDO 患者的自动筛查。