Suppr超能文献

卷积神经网络在眼前照片中对房角关闭的青光眼专家级检测:中美眼病研究。

Glaucoma Expert-Level Detection of Angle Closure in Goniophotographs With Convolutional Neural Networks: The Chinese American Eye Study.

机构信息

Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine at the University of Southern, California.

Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA.

出版信息

Am J Ophthalmol. 2021 Jun;226:100-107. doi: 10.1016/j.ajo.2021.02.004. Epub 2021 Feb 9.

Abstract

PURPOSE

To compare the performance of a novel convolutional neural network (CNN) classifier and human graders in detecting angle closure in EyeCam (Clarity Medical Systems, Pleasanton, California, USA) goniophotographs.

DESIGN

Retrospective cross-sectional study.

METHODS

Subjects from the Chinese American Eye Study underwent EyeCam goniophotography in 4 angle quadrants. A CNN classifier based on the ResNet-50 architecture was trained to detect angle closure, defined as inability to visualize the pigmented trabecular meshwork, using reference labels by a single experienced glaucoma specialist. The performance of the CNN classifier was assessed using an independent test dataset and reference labels by the single glaucoma specialist or a panel of 3 glaucoma specialists. This performance was compared to that of 9 human graders with a range of clinical experience. Outcome measures included area under the receiver operating characteristic curve (AUC) metrics and Cohen kappa coefficients in the binary classification of open or closed angle.

RESULTS

The CNN classifier was developed using 29,706 open and 2,929 closed angle images. The independent test dataset was composed of 600 open and 400 closed angle images. The CNN classifier achieved excellent performance based on single-grader (AUC = 0.969) and consensus (AUC = 0.952) labels. The agreement between the CNN classifier and consensus labels (κ = 0.746) surpassed that of all non-reference human graders (κ = 0.578-0.702). Human grader agreement with consensus labels improved with clinical experience (P = 0.03).

CONCLUSION

A CNN classifier can effectively detect angle closure in goniophotographs with performance comparable to that of an experienced glaucoma specialist. This provides an automated method to support remote detection of patients at risk for primary angle closure glaucoma.

摘要

目的

比较一种新型卷积神经网络(CNN)分类器和人类阅片者在检测 EyeCam(美国加利福尼亚州普莱森顿的 Clarity Medical Systems)眼前节照相中房角关闭的表现。

设计

回顾性横断面研究。

方法

来自中美眼病研究的受试者在 4 个房角象限接受 EyeCam 眼前节照相。基于 ResNet-50 架构的 CNN 分类器经过训练,用于检测无法可视化色素性小梁网的房角关闭,使用由一位有经验的青光眼专家提供的参考标签。使用独立的测试数据集和由一位青光眼专家或三位青光眼专家组成的专家组提供的参考标签来评估 CNN 分类器的性能。将其表现与 9 位具有不同临床经验的阅片者进行比较。主要结局指标包括在开角或闭角的二分类中接受者操作特征曲线(ROC)曲线下面积(AUC)指标和 Cohen kappa 系数。

结果

CNN 分类器是使用 29706 张开角和 2929 张闭角图像开发的。独立的测试数据集由 600 张开角和 400 张闭角图像组成。基于单一阅片者(AUC=0.969)和共识(AUC=0.952)标签,CNN 分类器实现了出色的性能。CNN 分类器与共识标签的一致性(κ=0.746)超过了所有非参考阅片者(κ=0.578-0.702)。随着临床经验的增加,人类阅片者与共识标签的一致性提高(P=0.03)。

结论

CNN 分类器可以有效地检测眼前节照相中的房角关闭,其表现可与有经验的青光眼专家相媲美。这为远程检测原发性闭角型青光眼高危患者提供了一种自动化方法。

相似文献

6
Use of EyeCam for imaging the anterior chamber angle.眼相机在前房角成像中的应用。
Invest Ophthalmol Vis Sci. 2010 Jun;51(6):2993-7. doi: 10.1167/iovs.09-4418. Epub 2010 Jan 13.
7
Automated analysis of angle closure from anterior chamber angle images.前房角图像闭角的自动分析。
Invest Ophthalmol Vis Sci. 2014 Oct 21;55(11):7669-73. doi: 10.1167/iovs.14-14852.

引用本文的文献

2
Artificial intelligence and big data integration in anterior segment imaging for glaucoma.人工智能与大数据在青光眼眼前节成像中的整合
Taiwan J Ophthalmol. 2024 Sep 13;14(3):319-332. doi: 10.4103/tjo.TJO-D-24-00053. eCollection 2024 Jul-Sep.
4
Advancements in high-resolution imaging of the iridocorneal angle.虹膜角膜角高分辨率成像的进展。
Front Ophthalmol (Lausanne). 2023 Aug 21;3:1229670. doi: 10.3389/fopht.2023.1229670. eCollection 2023.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验