Suppr超能文献

在 ANTERION 眼前节 OCT 系统上进行自动的专家级巩膜突检测和定量生物测量分析。

Automated expert-level scleral spur detection and quantitative biometric analysis on the ANTERION anterior segment OCT system.

机构信息

Roski Eye Institute, Department of Ophthalmology, University of Southern California Keck School of Medicine, Los Angeles, California, USA.

Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, USA.

出版信息

Br J Ophthalmol. 2024 May 21;108(5):702-709. doi: 10.1136/bjo-2022-322328.

Abstract

AIM

To perform an independent validation of deep learning (DL) algorithms for automated scleral spur detection and measurement of scleral spur-based biometric parameters in anterior segment optical coherence tomography (AS-OCT) images.

METHODS

Patients receiving routine eye care underwent AS-OCT imaging using the ANTERION OCT system (Heidelberg Engineering, Heidelberg, Germany). Scleral spur locations were marked by three human graders (reference, expert and novice) and predicted using DL algorithms developed by Heidelberg Engineering that prioritise a false positive rate <4% (FPR4) or true positive rate >95% (TPR95). Performance of human graders and DL algorithms were evaluated based on agreement of scleral spur locations and biometric measurements with the reference grader.

RESULTS

1308 AS-OCT images were obtained from 117 participants. Median differences in scleral spur locations from reference locations were significantly smaller (p<0.001) for the FPR4 (52.6±48.6 µm) and TPR95 (55.5±50.6 µm) algorithms compared with the expert (61.1±65.7 µm) and novice (79.4±74.9 µm) graders. Intergrader reproducibility of biometric measurements was excellent overall for all four (intraclass correlation coefficient range 0.918-0.997). Intergrader reproducibility of the expert grader (0.567-0.965) and DL algorithms (0.746-0.979) exceeded that of the novice grader (0.146-0.929) for images with narrow angles defined by OCT measurement of angle opening distance 500 µm anterior to the scleral spur (AOD500)<150 µm.

CONCLUSIONS

DL algorithms on the ANTERION approximate expert-level measurement of scleral spur-based biometric parameters in an independent patient population. These algorithms could enhance clinical utility of AS-OCT imaging, especially for evaluating patients with angle closure and performing intraocular lens calculations.

摘要

目的

对深度学习(DL)算法在眼前节光学相干断层扫描(AS-OCT)图像中自动检测巩膜突和测量巩膜突生物测量参数进行独立验证。

方法

接受常规眼部护理的患者使用 ANTERION OCT 系统(德国海德堡工程公司,海德堡)进行 AS-OCT 成像。巩膜突的位置由三名人类分级员(参考、专家和新手)标记,并使用海德堡工程公司开发的优先考虑假阳性率<4%(FPR4)或真阳性率>95%(TPR95)的 DL 算法进行预测。基于参考分级员的巩膜突位置和生物测量值,评估人类分级员和 DL 算法的性能。

结果

从 117 名参与者中获得了 1308 张 AS-OCT 图像。FPR4(52.6±48.6μm)和 TPR95(55.5±50.6μm)算法的巩膜突位置与参考位置的中位数差异明显小于专家(61.1±65.7μm)和新手(79.4±74.9μm)分级员(均<0.001)。所有四个分级员的生物测量值的分级间可重复性均非常好(组内相关系数范围为 0.918-0.997)。对于 OCT 测量的巩膜突前 500μm 的前房角开口距离(AOD500)<150μm 的窄角定义的图像,专家分级员(0.567-0.965)和 DL 算法(0.746-0.979)的分级间可重复性优于新手分级员(0.146-0.929)。

结论

ANTERION 上的 DL 算法可在独立患者人群中近似专家水平地测量基于巩膜突的生物测量参数。这些算法可以增强 AS-OCT 成像的临床实用性,特别是在评估闭角型青光眼患者和进行人工晶状体计算时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/841a/11137469/79c560baaaa9/bjo-2022-322328f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验