Suppr超能文献

在果蝇发育过程中,平衡能量消耗和储存与生长和生物合成。

Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development.

机构信息

Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

Department of Biology, Indiana University, Bloomington, IN, 47405, USA.

出版信息

Dev Biol. 2021 Jul;475:234-244. doi: 10.1016/j.ydbio.2021.01.019. Epub 2021 Feb 11.

Abstract

Sustaining life requires efficient uptake of nutrients and conversion to useable forms. Almost everything about this process is dynamic. Nutrient availability fluctuates and changing environmental conditions impose new demands that can tip the metabolic equilibrium from biosynthesis and macromolecule storage to energy expenditure. At the same time, the organism itself changes, particularly during the rapid growth and differentiation in early development and also later in life as the adult ages. Here we review what has been learned from Drosophila melanogaster as an experimental model about the connections between external signals, signaling pathways, tissues and organs that allow animals to balance energy storage with expenditure in the face of change, both intrinsic and extrinsic.

摘要

维持生命需要有效地吸收营养物质并将其转化为可用形式。这个过程几乎所有方面都是动态的。营养物质的可用性会波动,不断变化的环境条件会提出新的要求,从而使新陈代谢平衡从生物合成和大分子储存转变为能量消耗。与此同时,生物体本身也在发生变化,特别是在早期发育的快速生长和分化过程中,以及成年后随着年龄的增长。在这里,我们回顾了从黑腹果蝇(Drosophila melanogaster)作为实验模型中所学到的关于外部信号、信号通路、组织和器官之间的联系的知识,这些联系使动物能够在面对内在和外在的变化时,平衡能量储存与消耗。

相似文献

1
Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development.
Dev Biol. 2021 Jul;475:234-244. doi: 10.1016/j.ydbio.2021.01.019. Epub 2021 Feb 11.
2
Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila.
Dev Biol. 2010 Jan 15;337(2):375-85. doi: 10.1016/j.ydbio.2009.11.011. Epub 2009 Nov 13.
4
Nutrient Sensing via Gut in .
Int J Mol Sci. 2022 Feb 28;23(5):2694. doi: 10.3390/ijms23052694.
5
Stem Cell Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content.
Dev Cell. 2018 Oct 8;47(1):112-121.e3. doi: 10.1016/j.devcel.2018.08.011. Epub 2018 Sep 13.
6
Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood.
Dev Cell. 2019 Jan 28;48(2):200-214.e6. doi: 10.1016/j.devcel.2018.11.030. Epub 2018 Dec 13.
7
Metabolism and growth adaptation to environmental conditions in Drosophila.
Cell Mol Life Sci. 2020 Nov;77(22):4523-4551. doi: 10.1007/s00018-020-03547-2. Epub 2020 May 24.
8
Brain adiponectin signaling controls peripheral insulin response in Drosophila.
Nat Commun. 2021 Sep 24;12(1):5633. doi: 10.1038/s41467-021-25940-6.
9
What fuels the fly: Energy metabolism in and its application to the study of obesity and diabetes.
Sci Adv. 2021 Jun 9;7(24). doi: 10.1126/sciadv.abg4336. Print 2021 Jun.
10
Interplay between metabolic energy regulation and memory pathways in Drosophila.
Trends Neurosci. 2022 Jul;45(7):539-549. doi: 10.1016/j.tins.2022.04.007. Epub 2022 May 18.

引用本文的文献

1
as a Genetic Model System to Study Organismal Energy Metabolism.
Biomolecules. 2025 May 1;15(5):652. doi: 10.3390/biom15050652.
2
Glycolytic disruption restricts Drosophila melanogaster larval growth via the cytokine Upd3.
PLoS Genet. 2025 May 2;21(5):e1011690. doi: 10.1371/journal.pgen.1011690. eCollection 2025 May.
3
Inter-organ communication in Drosophila: Lipoproteins, adipokines, and immune-metabolic coordination.
Curr Opin Cell Biol. 2025 Jun;94:102508. doi: 10.1016/j.ceb.2025.102508. Epub 2025 Apr 4.
4
Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster.
Mol Metab. 2025 Mar;93:102106. doi: 10.1016/j.molmet.2025.102106. Epub 2025 Jan 31.
5
Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in .
bioRxiv. 2025 Jan 8:2025.01.07.631819. doi: 10.1101/2025.01.07.631819.
6
Endogenous coenzyme Q content and exogenous bioavailability in .
Heliyon. 2024 Sep 12;10(18):e37854. doi: 10.1016/j.heliyon.2024.e37854. eCollection 2024 Sep 30.
8
Glycolytic Disruption Triggers Interorgan Signaling to Nonautonomously Restrict Larval Growth.
bioRxiv. 2024 Jun 9:2024.06.06.597835. doi: 10.1101/2024.06.06.597835.
9
Probiotic spp. improves memory by increasing lactate dehydrogenase levels in the brain mushroom body neurons.
Gut Microbes. 2024 Jan-Dec;16(1):2316533. doi: 10.1080/19490976.2024.2316533. Epub 2024 Feb 19.
10

本文引用的文献

2
What determines organ size during development and regeneration?
Development. 2021 Jan 11;148(1):dev196063. doi: 10.1242/dev.196063.
3
Interorgan communication in the control of metamorphosis.
Curr Opin Insect Sci. 2021 Feb;43:54-62. doi: 10.1016/j.cois.2020.10.005. Epub 2020 Oct 23.
4
Steroid hormones, dietary nutrients, and temporal progression of neurogenesis.
Curr Opin Insect Sci. 2021 Feb;43:70-77. doi: 10.1016/j.cois.2020.10.008. Epub 2020 Oct 28.
6
Regulation of Body Size and Growth Control.
Genetics. 2020 Oct;216(2):269-313. doi: 10.1534/genetics.120.303095.
7
Insulin and Leptin/Upd2 Exert Opposing Influences on Synapse Number in Fat-Sensing Neurons.
Cell Metab. 2020 Nov 3;32(5):786-800.e7. doi: 10.1016/j.cmet.2020.08.017. Epub 2020 Sep 24.
8
Control of the insect metamorphic transition by ecdysteroid production and secretion.
Curr Opin Insect Sci. 2021 Feb;43:11-20. doi: 10.1016/j.cois.2020.09.004. Epub 2020 Sep 17.
9
Feedforward Regulation of Glucose Metabolism by Steroid Hormones Drives a Developmental Transition in Drosophila.
Curr Biol. 2020 Sep 21;30(18):3624-3632.e5. doi: 10.1016/j.cub.2020.06.043. Epub 2020 Jul 16.
10
Reclaiming Warburg: using developmental biology to gain insight into human metabolic diseases.
Development. 2020 Jun 14;147(11):dev189340. doi: 10.1242/dev.189340.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验