Suppr超能文献

基于电阻抗光谱的干细胞分化与增殖分类的机器学习

Machine Learning for Stem Cell Differentiation and Proliferation Classification on Electrical Impedance Spectroscopy.

作者信息

Cunha André B, Hou Jie, Schuelke Christin

机构信息

Department of Physics, University of Oslo, Oslo, Norway.

出版信息

J Electr Bioimpedance. 2019 Dec 31;10(1):124-132. doi: 10.2478/joeb-2019-0018. eCollection 2019 Jan.

Abstract

Electrical impedance spectroscopy (EIS) measurements on cells is a proven method to assess stem cell proliferation and differentiation. Cell regenerative medicine (CRM) is an emerging field where the need to develop and deploy stem cell assessment techniques is paramount as experimental treatments reach pre-clinical and clinical stages. However, EIS measurements on cells is a method requiring extensive post-processing and analysis. As a contribution to address this concern, we developed three machine learning models for three different stem cell lines able to classify the measured data as proliferation or differentiation laying the stone for future studies on using machine learning to profile EIS measurements on stem cells spectra.

摘要

对细胞进行电阻抗谱(EIS)测量是评估干细胞增殖和分化的一种成熟方法。细胞再生医学(CRM)是一个新兴领域,随着实验性治疗进入临床前和临床阶段,开发和应用干细胞评估技术的需求至关重要。然而,对细胞进行EIS测量是一种需要大量后处理和分析的方法。作为解决这一问题的一项贡献,我们针对三种不同的干细胞系开发了三种机器学习模型,能够将测量数据分类为增殖或分化,为未来利用机器学习分析干细胞光谱的EIS测量研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9974/7851974/dde0ecdeea57/joeb-10-124-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验