Stevens Amy O, He Yi
Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, United States.
Front Mol Biosci. 2021 Jan 27;7:616135. doi: 10.3389/fmolb.2020.616135. eCollection 2020.
PICK1 is a multi-domain scaffolding protein that is uniquely comprised of both a PDZ domain and a BAR domain. While previous experiments have shown that the PDZ domain and the linker positively regulate the BAR domain and the C-terminus negatively regulates the BAR domain, the details of internal regulation mechanisms are unknown. Molecular dynamics (MD) simulations have been proven to be a useful tool in revealing the intramolecular interactions at atomic-level resolution. PICK1 performs its biological functions in a dimeric form which is extremely computationally demanding to simulate with an all-atom force field. Here, we use coarse-grained MD simulations to expose the key residues and driving forces in the internal regulations of PICK1. While the PDZ and BAR domains do not form a stable complex, our simulations show the PDZ domain preferentially interacting with the concave surface of the BAR domain over other BAR domain regions. Furthermore, our simulations show that the short helix in the linker region can form interactions with the PDZ domain. Our results reveal that the surface of the βB-βC loop, βC strand, and αA-βD loop of the PDZ domain can form a group of hydrophobic interactions surrounding the linker helix. These interactions are driven by hydrophobic forces. In contrast, our simulations reveal a very dynamic C-terminus that most often resides on the convex surface of the BAR domain rather than the previously suspected concave surface. These interactions are driven by a combination of electrostatic and hydrophobic interactions.
PICK1是一种多结构域支架蛋白,独特地由一个PDZ结构域和一个BAR结构域组成。虽然先前的实验表明,PDZ结构域和连接区对BAR结构域起正向调节作用,而C末端对BAR结构域起负向调节作用,但内部调节机制的细节尚不清楚。分子动力学(MD)模拟已被证明是一种在原子水平分辨率下揭示分子内相互作用的有用工具。PICK1以二聚体形式发挥其生物学功能,用全原子力场模拟这种形式的计算量极大。在此,我们使用粗粒度MD模拟来揭示PICK1内部调节中的关键残基和驱动力。虽然PDZ结构域和BAR结构域不形成稳定的复合物,但我们的模拟表明,PDZ结构域与BAR结构域的凹面优先相互作用,而不是与其他BAR结构域区域相互作用。此外,我们的模拟表明,连接区的短螺旋可以与PDZ结构域形成相互作用。我们的结果表明,PDZ结构域的βB-βC环、βC链和αA-βD环的表面可以围绕连接螺旋形成一组疏水相互作用。这些相互作用由疏水力驱动。相比之下,我们的模拟揭示了一个非常动态的C末端,它最常位于BAR结构域的凸面,而不是先前怀疑的凹面。这些相互作用由静电和疏水相互作用共同驱动。