Suppr超能文献

用通过求解线性方程组构造的神经网络来探究结构-功能关系。

Probing the structure-function relationship with neural networks constructed by solving a system of linear equations.

机构信息

Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.

Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Buenos Aires, Argentina.

出版信息

Sci Rep. 2021 Feb 15;11(1):3808. doi: 10.1038/s41598-021-82964-0.

Abstract

Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure-function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function.

摘要

神经网络模型是理解大脑功能的宝贵工具,因为它们允许我们将细胞和电路水平与行为联系起来。神经网络通常包含大量的参数,这些参数必须经过仔细选择,以便网络再现解剖学、行为和神经生理学数据。这些参数通常使用现成的优化算法进行拟合,这些算法会迭代地改变网络参数并模拟网络以评估其性能并提高拟合度。在这里,我们提出通过从网络动力学到网络参数来反转拟合过程。根据与任务解决方案相关联的转移图来选择发射状态转移。然后,从网络的发射状态和膜电位构建一个线性方程组,以确保系统的一致性。这允许我们将模型的动态特征(如神经元的发射率和相关性)与结构特征以及网络实现的任务求解算法解耦。我们将我们的方法用于探测序列记忆任务中的结构-功能关系。获得的网络显示出连接性和发射统计数据,这些数据再现了实验观察结果。我们认为,所提出的方法是构建神经网络以模拟大脑功能的一种互补且必要的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df91/7884791/4fb6d517df69/41598_2021_82964_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验