Suppr超能文献

甘蔗复杂性状基因组预测的准确性。

Accuracy of genomic prediction of complex traits in sugarcane.

机构信息

Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.

Sugar Research Australia, Mackay, QLD, 4741, Australia.

出版信息

Theor Appl Genet. 2021 May;134(5):1455-1462. doi: 10.1007/s00122-021-03782-6. Epub 2021 Feb 15.

Abstract

Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.

摘要

甘蔗的复杂性状可以通过全基因组 DNA 标记进行准确预测。基因组一步预测是商业育种计划中基因组选择的一种有吸引力的方法。在过去的几十年里,甘蔗育种计划在关键性状(如公顷甘蔗产量(TCH)、商业可榨糖(CCS)和纤维含量)方面实现了高达 1%的遗传增益。在这里,我们评估了基因组选择通过从 3984 个克隆的参考群体中得出基因组估计育种值(GEBV)来提高这些性状遗传增益速度的潜力,这些克隆的基因型为 26K SNP。我们评估了三种不同的基因组预测方法 GBLUP、基因组一步预测(GenomicSS)和贝叶斯回归(BayesR)。基因组一步预测(GenomicSS)结合了历史和近期育种计划的系谱和 SNP 信息,对大多数性状(0.3-0.44)实现了最准确的预测。这种方法对于常规遗传评估很有吸引力,因为它只需要对现有评估进行相对较少的修改,并且可以为所有个体而不仅仅是那些被基因型的个体估计育种值。在早期试验中增加信息,可将 CCS 和纤维的准确性提高 5%,但 TCH 的准确性提高 0%,这反映了 TCH 竞争效应的重要性。这些 GEBV 准确性非常高,结合正确的育种策略,可以实现遗传增益率提高一倍。我们还评估了开花性状开花天数、性别和花粉活力,发现它们的遗传力分别为 0.57、0.78 和 0.72。GEBV 准确性表明,基因组选择可以用于改良这些性状。这可能为育种者提供新的途径来管理他们的育种计划,例如,通过同步开花时间和选择花粉活力高的雄性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验