Suppr超能文献

通过利用相关性状中包含的信息提高豌豆育种早期世代的选择准确性。

Accuracy of Selection in Early Generations of Field Pea Breeding Increases by Exploiting the Information Contained in Correlated Traits.

作者信息

Castro-Urrea Felipe A, Urricariet Maria P, Stefanova Katia T, Li Li, Moss Wesley M, Guzzomi Andrew L, Sass Olaf, Siddique Kadambot H M, Cowling Wallace A

机构信息

The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.

School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.

出版信息

Plants (Basel). 2023 Mar 2;12(5):1141. doi: 10.3390/plants12051141.

Abstract

Accuracy of predicted breeding values (PBV) for low heritability traits may be increased in early generations by exploiting the information available in correlated traits. We compared the accuracy of PBV for 10 correlated traits with low to medium narrow-sense heritability (h2) in a genetically diverse field pea ( L.) population after univariate or multivariate linear mixed model (MLMM) analysis with pedigree information. In the contra-season, we crossed and selfed S parent plants, and in the main season we evaluated spaced plants of S cross progeny and S (S or higher) self progeny of parent plants for the 10 traits. Stem strength traits included stem buckling (SB) (h2 = 0.05), compressed stem thickness (CST) (h2 = 0.12), internode length (IL) (h2 = 0.61) and angle of the main stem above horizontal at first flower (EAngle) (h2 = 0.46). Significant genetic correlations of the additive effects occurred between SB and CST (0.61), IL and EAngle (-0.90) and IL and CST (-0.36). The average accuracy of PBVs in S progeny increased from 0.799 to 0.841 and in S progeny increased from 0.835 to 0.875 in univariate vs MLMM, respectively. An optimized mating design was constructed with optimal contribution selection based on an index of PBV for the 10 traits, and predicted genetic gain in the next cycle ranged from 1.4% (SB), 5.0% (CST), 10.5% (EAngle) and -10.5% (IL), with low achieved parental coancestry of 0.12. MLMM improved the potential genetic gain in annual cycles of early generation selection in field pea by increasing the accuracy of PBV.

摘要

通过利用相关性状中可用的信息,低遗传力性状的预测育种值(PBV)在早期世代的准确性可能会提高。我们在一个遗传多样的豌豆(L.)群体中,使用系谱信息进行单变量或多变量线性混合模型(MLMM)分析后,比较了10个具有低到中等狭义遗传力(h2)的相关性状的PBV准确性。在反季节,我们对S亲本植株进行杂交和自交,在主要季节,我们评估了S杂交后代以及亲本植株的S(S或更高)自交后代的10个性状的间隔种植植株。茎强度性状包括茎屈曲(SB)(h2 = 0.05)、压缩茎厚度(CST)(h2 = 0.12)、节间长度(IL)(h2 = 0.61)和第一朵花时主茎与水平方向的夹角(EAngle)(h2 = 0.46)。SB与CST之间(0.61)以及IL与EAngle之间(-0.90)和IL与CST之间(-0.36)存在显著的加性效应遗传相关性。在单变量分析与MLMM分析中,S后代中PBV的平均准确性分别从0.799提高到0.841,在S后代中从0.835提高到0.875。基于这10个性状的PBV指数,采用最优贡献选择构建了优化的交配设计,预测下一轮的遗传增益范围为1.4%(SB)、5.0%(CST)、10.5%(EAngle)和 -10.5%(IL),亲本共祖系数低至0.12。MLMM通过提高PBV的准确性,改善了豌豆早期世代选择年度周期中的潜在遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1377/10005560/93f826b243bf/plants-12-01141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验