Suppr超能文献

人工智能在乳腺癌分级中的应用:一种用于改善预后分类以实现精准管理的有前景的方法。

Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision.

机构信息

Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Biodiscovery Institute, Nottingham, UK.

Faculty of Science, Damietta University, Damietta, Egypt.

出版信息

Histopathology. 2021 Aug;79(2):187-199. doi: 10.1111/his.14354. Epub 2021 May 6.

Abstract

AIM

Artificial intelligence (AI)-based breast cancer grading may help to overcome perceived limitations of human assessment. Here, the potential value of AI grade was evaluated at the molecular level and in predicting patient outcome.

METHODS AND RESULTS

A supervised convolutional neural network (CNN) model was trained on images of 612 breast cancers from The Cancer Genome Atlas (TCGA). The test set, obtained from the Cooperative Human Tissue Network (CHTN), comprised 1058 cancers with corresponding survival data. Upon reversal, a CNN was trained from images of 1537 CHTN cancers and tested on 397 TCGA cancers. In TCGA, mRNA models were trained using AI grade and Nottingham grade (NG) as labels. Performance of mRNA models in predicting patient outcome was evaluated using data from 1807 cancers from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. In selecting images for training, nucleolar prominence determined high- versus low-grade cancer cells. In CHTN, NG corresponded to significant survival stratification in stages 1, 2 and 3 cancers, while AI grade showed significance in stages 1 and 2 and borderline in stage 3 tumours. In METABRIC, the mRNA model trained from AI grade was not significantly different to the NG-based model. The gene which best described AI grade was TRIP13, a gene involved with mitotic spindle assembly.

CONCLUSION

An AI grade trained from the morphologically distinctive feature of nucleolar prominence could transmit significant patient outcome information across three independent patient cohorts. AI grade shows promise in gene discovery and for second opinions.

摘要

目的

基于人工智能(AI)的乳腺癌分级可能有助于克服人类评估的固有局限性。在此,在分子水平上评估了 AI 分级的潜在价值,并预测了患者的预后。

方法和结果

使用来自癌症基因组图谱(TCGA)的 612 例乳腺癌图像对监督卷积神经网络(CNN)模型进行了训练。从合作人体组织网络(CHTN)获得的测试集包含 1058 例癌症,以及相应的生存数据。反转后,从 1537 例 CHTN 癌症的图像中训练了一个 CNN,并在 397 例 TCGA 癌症上进行了测试。在 TCGA 中,使用 AI 分级和诺丁汉分级(NG)作为标签,使用 mRNA 模型对患者的预后进行预测。使用来自乳腺癌国际联合会分子分类学(METABRIC)队列的 1807 例癌症的数据评估了 mRNA 模型预测患者预后的性能。在选择用于训练的图像时,核仁突出决定了高等级和低等级的癌细胞。在 CHTN 中,NG 在 1、2 和 3 期癌症中对应显著的生存分层,而 AI 分级在 1 期和 2 期具有显著意义,在 3 期肿瘤中具有边缘意义。在 METABRIC 中,基于 AI 分级训练的 mRNA 模型与基于 NG 的模型没有显著差异。描述 AI 分级的最佳基因是 TRIP13,该基因参与有丝分裂纺锤体组装。

结论

从核仁突出的形态学特征训练的 AI 分级可以在三个独立的患者队列中传递重要的患者预后信息。AI 分级在基因发现和第二意见方面有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验