Suppr超能文献

基于深度学习的三级类似NHG乳腺癌组织学分级模型的开发与预后验证

Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer.

作者信息

Sharma Abhinav, Weitz Philippe, Wang Yinxi, Liu Bojing, Vallon-Christersson Johan, Hartman Johan, Rantalainen Mattias

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.

出版信息

Breast Cancer Res. 2024 Jan 29;26(1):17. doi: 10.1186/s13058-024-01770-4.

Abstract

BACKGROUND

Histological grade is a well-known prognostic factor that is routinely assessed in breast tumours. However, manual assessment of Nottingham Histological Grade (NHG) has high inter-assessor and inter-laboratory variability, causing uncertainty in grade assignments. To address this challenge, we developed and validated a three-level NHG-like deep learning-based histological grade model (predGrade). The primary performance evaluation focuses on prognostic performance.

METHODS

This observational study is based on two patient cohorts (SöS-BC-4, N = 2421 (training and internal test); SCAN-B-Lund, N = 1262 (test)) that include routine histological whole-slide images (WSIs) together with patient outcomes. A deep convolutional neural network (CNN) model with an attention mechanism was optimised for the classification of the three-level histological grading (NHG) from haematoxylin and eosin-stained WSIs. The prognostic performance was evaluated by time-to-event analysis of recurrence-free survival and compared to clinical NHG grade assignments in the internal test set as well as in the fully independent external test cohort.

RESULTS

We observed effect sizes (hazard ratio) for grade 3 versus 1, for the conventional NHG method (HR = 2.60 (1.18-5.70 95%CI, p-value = 0.017)) and the deep learning model (HR = 2.27, 95%CI 1.07-4.82, p-value = 0.033) on the internal test set after adjusting for established clinicopathological risk factors. In the external test set, the unadjusted HR for clinical NHG 2 versus 1 was estimated to be 2.59 (p-value = 0.004) and clinical NHG 3 versus 1 was estimated to be 3.58 (p-value < 0.001). For predGrade, the unadjusted HR for predGrade 2 versus 1 HR = 2.52 (p-value = 0.030), and 4.07 (p-value = 0.001) for preGrade 3 versus 1 was observed in the independent external test set. In multivariable analysis, HR estimates for neither clinical NHG nor predGrade were found to be significant (p-value > 0.05). We tested for differences in HR estimates between NHG and predGrade in the independent test set and found no significant difference between the two classification models (p-value > 0.05), confirming similar prognostic performance between conventional NHG and predGrade.

CONCLUSION

Routine histopathology assessment of NHG has a high degree of inter-assessor variability, motivating the development of model-based decision support to improve reproducibility in histological grading. We found that the proposed model (predGrade) provides a similar prognostic performance as clinical NHG. The results indicate that deep CNN-based models can be applied for breast cancer histological grading.

摘要

背景

组织学分级是一种众所周知的预后因素,在乳腺肿瘤中经常进行评估。然而,诺丁汉组织学分级(NHG)的人工评估在评估者之间和实验室之间存在很大差异,导致分级结果存在不确定性。为应对这一挑战,我们开发并验证了一种基于深度学习的三级类NHG组织学分级模型(predGrade)。主要性能评估集中在预后性能上。

方法

这项观察性研究基于两个患者队列(SöS-BC-4,N = 2421(训练和内部测试);SCAN-B-Lund,N = 1262(测试)),这些队列包括常规组织学全切片图像(WSIs)以及患者预后情况。一个带有注意力机制的深度卷积神经网络(CNN)模型针对苏木精和伊红染色的WSIs的三级组织学分级(NHG)分类进行了优化。通过对无复发生存期的事件发生时间分析来评估预后性能,并与内部测试集以及完全独立的外部测试队列中的临床NHG分级结果进行比较。

结果

在调整既定的临床病理风险因素后,我们在内部测试集中观察到了3级与1级的效应大小(风险比),对于传统NHG方法(HR = 2.60(1.18 - 5.70 95%CI,p值 = 0.017))和深度学习模型(HR = 2.27,95%CI 1.07 - 4.82,p值 = 0.033)。在外部测试集中,临床NHG 2级与1级的未调整HR估计为2.59(p值 = 0.004),临床NHG 3级与1级的未调整HR估计为3.58(p值 < 0.001)。对于predGrade,在独立外部测试集中观察到predGrade 2级与1级的未调整HR为2.52(p值 = 0.030),predGrade 3级与1级的未调整HR为4.07(p值 = 0.001)。在多变量分析中,未发现临床NHG和predGrade的HR估计值具有显著性(p值 > 0.05)。我们在独立测试集中测试了NHG和predGrade之间HR估计值的差异,发现这两个分类模型之间没有显著差异(p值 > 0.05),证实了传统NHG和predGrade之间具有相似的预后性能。

结论

NHG的常规组织病理学评估在评估者之间存在高度变异性,这促使开发基于模型的决策支持工具以提高组织学分级的可重复性。我们发现所提出的模型(predGrade)提供了与临床NHG相似的预后性能。结果表明基于深度CNN的模型可应用于乳腺癌组织学分级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c3/10823657/8524e7e9272c/13058_2024_1770_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验