Suppr超能文献

多模态声捕获可实现 miRNA 和 MS 蛋白质组学研究中外泌体和微颗粒的高容量和高通量富集。

Multinodal Acoustic Trapping Enables High Capacity and High Throughput Enrichment of Extracellular Vesicles and Microparticles in miRNA and MS Proteomics Studies.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Lund University, 221 84 Lund, Sweden.

Department of Clinical Sciences, Infection Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden.

出版信息

Anal Chem. 2021 Mar 2;93(8):3929-3937. doi: 10.1021/acs.analchem.0c04772. Epub 2021 Feb 16.

Abstract

We report a new design of an acoustophoretic trapping device with significantly increased capacity and throughput, compared to current commercial acoustic trapping systems. Acoustic trapping enables nanoparticle and extracellular vesicle (EV) enrichment without ultracentrifugation. Current commercial acoustic trapping technology uses an acoustic single-node resonance and typically operates at flow rates <50 μL/min, which limits the processing of the larger samples. Here, we use a larger capillary that supports an acoustic multinode resonance, which increased the seed particle capacity 40 times and throughput 25-40 times compared to single-node systems. The resulting increase in capacity and throughput was demonstrated by isolation of nanogram amounts of microRNA from acoustically trapped urinary EVs within 10 min. Additionally, the improved trapping performance enabled isolation of extracellular vesicles for downstream mass spectrometry analysis. This was demonstrated by the differential protein abundance profiling of urine samples (1-3 mL), derived from the non-trapped versus trapped urine samples.

摘要

我们报告了一种新设计的声镊捕获装置,与当前的商业声捕获系统相比,其容量和通量有了显著提高。声镊技术可实现纳米颗粒和细胞外囊泡(EV)的无需超速离心的富集。目前的商业声捕获技术使用声学单节点共振,通常在流速<50 μL/min 下运行,这限制了更大样品的处理。在这里,我们使用更大的毛细管来支持声学多节点共振,与单节点系统相比,种子颗粒的容量增加了 40 倍,通量增加了 25-40 倍。通过在 10 分钟内从声捕获的尿液 EV 中分离出纳克级别的 microRNA,证明了容量和通量的增加。此外,改进的捕获性能还能够实现用于下游质谱分析的细胞外囊泡的分离。这通过对非捕获与捕获尿液样本(1-3 mL)的差异蛋白丰度谱分析得到证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff3b/8023533/ec8e6d76f549/ac0c04772_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验