Bockius N, Shea J, Jung G, Schmid F, Hanke M
Institut für Mathematik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
J Phys Condens Matter. 2021 May 3;33(21). doi: 10.1088/1361-648X/abe6df.
The generalized Langevin equation is a model for the motion of coarse-grained particles where dissipative forces are represented by a memory term. The numerical realization of such a model requires the implementation of a stochastic delay-differential equation and the estimation of a corresponding memory kernel. Here we develop a new approach for computing a data-driven Markov model for the motion of the particles, given equidistant samples of their velocity autocorrelation function. Our method bypasses the determination of the underlying memory kernel by representing it via up to about twenty auxiliary variables. The algorithm is based on a sophisticated variant of the Prony method for exponential interpolation and employs the positive real lemma from model reduction theory to extract the associated Markov model. We demonstrate the potential of this approach for the test case of anomalous diffusion, where data are given analytically, and then apply our method to velocity autocorrelation data of molecular dynamics simulations of a colloid in a Lennard-Jones fluid. In both cases, the velocity autocorrelation function and the memory kernel can be reproduced very accurately. Moreover, we show that the algorithm can also handle input data with large statistical noise. We anticipate that it will be a very useful tool in future studies that involve dynamic coarse-graining of complex soft matter systems.
广义朗之万方程是一种用于粗粒化粒子运动的模型,其中耗散力由一个记忆项表示。这种模型的数值实现需要求解一个随机延迟微分方程并估计相应的记忆核。在此,我们提出了一种新方法,用于在给定粒子速度自相关函数等距样本的情况下,计算粒子运动的数据驱动马尔可夫模型。我们的方法通过用大约二十个辅助变量来表示记忆核,从而绕过了对其底层的确定。该算法基于用于指数插值的Prony方法的一种复杂变体,并利用模型约简理论中的正实引理来提取相关的马尔可夫模型。我们通过解析给出数据的反常扩散测试案例展示了这种方法的潜力,然后将我们的方法应用于 Lennard-Jones 流体中胶体分子动力学模拟的速度自相关数据。在这两种情况下,速度自相关函数和记忆核都能被非常精确地重现。此外,我们表明该算法还能处理具有大统计噪声的输入数据。我们预计它将成为未来涉及复杂软物质系统动态粗粒化研究中的一个非常有用的工具。