Institut des Sciences du Calcul et des Données, Sorbonne Université, F-75005 Paris, France.
CNRS, FR 3487, Fédération de Mathématiques de CentraleSupélec, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2117586119. doi: 10.1073/pnas.2117586119. Epub 2022 Mar 23.
SignificanceThe analysis of complex systems with many degrees of freedom generally involves the definition of low-dimensional collective variables more amenable to physical understanding. Their dynamics can be modeled by generalized Langevin equations, whose coefficients have to be estimated from simulations of the initial high-dimensional system. These equations feature a memory kernel describing the mutual influence of the low-dimensional variables and their environment. We introduce and implement an approach where the generalized Langevin equation is designed to maximize the statistical likelihood of the observed data. This provides an efficient way to generate reduced models to study dynamical properties of complex processes such as chemical reactions in solution, conformational changes in biomolecules, or phase transitions in condensed matter systems.
意义
对于具有许多自由度的复杂系统的分析通常涉及定义更易于物理理解的低维集体变量。它们的动力学可以通过广义朗之万方程来建模,这些方程的系数必须从初始高维系统的模拟中估计。这些方程具有描述低维变量及其环境之间相互影响的记忆核。我们引入并实施了一种方法,其中广义朗之万方程被设计为使观察到的数据的统计似然度最大化。这为生成简化模型以研究复杂过程的动力学特性提供了一种有效方法,例如溶液中的化学反应、生物分子中的构象变化或凝聚态物质系统中的相变。