Suppr超能文献

前生物信息编码聚合物中催化功能的出现。

Emergence of catalytic function in prebiotic information-coding polymers.

机构信息

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, United States.

Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States.

出版信息

Elife. 2024 Mar 26;12:RP91397. doi: 10.7554/eLife.91397.

Abstract

Life as we know it relies on the interplay between catalytic activity and information processing carried out by biological polymers. Here we present a plausible pathway by which a pool of prebiotic information-coding oligomers could acquire an early catalytic function, namely sequence-specific cleavage activity. Starting with a system capable of non-enzymatic templated replication, we demonstrate that even non-catalyzed spontaneous cleavage would promote proliferation by generating short fragments that act as primers. Furthermore, we show that catalytic cleavage function can naturally emerge and proliferate in this system. Specifically, a cooperative catalytic network with four subpopulations of oligomers is selected by the evolution in competition with chains lacking catalytic activity. The cooperative system emerges through the functional differentiation of oligomers into catalysts and their substrates. The model is inspired by the structure of the hammerhead RNA enzyme as well as other DNA- and RNA-based enzymes with cleavage activity that readily emerge through natural or artificial selection. We identify the conditions necessary for the emergence of the cooperative catalytic network. In particular, we show that it requires the catalytic rate enhancement over the spontaneous cleavage rate to be at least 10-10, a factor consistent with the existing experiments. The evolutionary pressure leads to a further increase in catalytic efficiency. The presented mechanism provides an escape route from a relatively simple pairwise replication of oligomers toward a more complex behavior involving catalytic function. This provides a bridge between the information-first origin of life scenarios and the paradigm of autocatalytic sets and hypercycles, albeit based on cleavage rather than synthesis of reactants.

摘要

我们所熟知的生命依赖于生物聚合物进行的催化活性和信息处理之间的相互作用。在这里,我们提出了一种可能的途径,通过该途径,一组原始信息编码低聚物可以获得早期的催化功能,即序列特异性切割活性。从一个能够进行非酶模板复制的系统开始,我们证明即使是非催化自发切割也会通过产生作为引物的短片段来促进增殖。此外,我们表明,催化切割功能可以在该系统中自然出现和增殖。具体来说,具有四个低聚物亚群的协作催化网络通过与缺乏催化活性的链竞争进化而被选择。协作系统通过低聚物的功能分化为催化剂及其底物而出现。该模型的灵感来自锤头 RNA 酶的结构以及其他具有切割活性的基于 DNA 和 RNA 的酶,这些酶很容易通过自然或人工选择出现。我们确定了出现协作催化网络的必要条件。特别是,我们表明它需要催化速率相对于自发切割速率的增强至少为 10-10,这与现有实验一致。进化压力导致催化效率进一步提高。所提出的机制为从相对简单的低聚物对复制向涉及催化功能的更复杂行为提供了一条出路。这为基于信息的生命起源场景和自催化集和超循环范式之间提供了一座桥梁,尽管是基于切割而不是反应物的合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3582/10965222/e59d82b5da7c/elife-91397-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验