Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
Med Phys. 2021 Apr;48(4):2018-2026. doi: 10.1002/mp.14784. Epub 2021 Mar 9.
Current standard practice for clinical radionuclide dosimetry utilizes reference phantoms, where defined organ dimensions represent population averages for a given sex and age. Greater phantom personalization would support more accurate dose estimations and personalized dosimetry. Tailoring phantoms is traditionally accomplished using operator-intensive organ-level segmentation of anatomic images. Modern mesh phantoms provide enhanced anatomical realism, which has motivated their integration within Monte Carlo codes. Here, we present an automatable strategy for generating patient-specific phantoms/dosimetry using intensity-based deformable image registration between mesh reference phantoms and patient CT images. This work demonstrates a proof-of-concept personalized dosimetry workflow, presented in comparison to the manual segmentation approach.
A linear attenuation coefficient phantom was generated by resampling the PSRK-Man reference phantom onto a voxel grid and defining organ regions with corresponding Hounsfield unit (HU) reference values. The HU phantom was co-registered with a patient CT scan using Plastimatch B-spline deformable registration. In parallel, major organs were manually contoured to generate a "ground truth" patient-specific phantom for comparisons. Monte Carlo derived S-values, which support nuclear medicine dosimetry, were calculated using both approaches and compared.
Application of the derived B-spline transform to the polygon vertices comprising the PSRK-Man yielded a deformed variant more closely matching the patient's body contour and most organ volumes as-evaluated by Hausdorff distance and Dice metrics. S-values computed for fluorine-18 for the deformed phantom using the Particle and Heavy Ion Transport code System showed improved agreement with those derived from the patient-specific analog.
Deformable registration techniques can be used to create a personalized phantom and better support patient-specific dosimetry. This method is shown to be easier and faster than manual segmentation. Our study is limited to a proof-of-concept scope, but demonstrates that integration of personalized phantoms into clinical dosimetry workflows can reasonably be achieved when anatomical images (CT) are available.
目前,临床放射性核素剂量学的标准实践利用参考体模,其中定义的器官尺寸代表给定性别和年龄的人群平均值。更大程度的体模个性化将支持更准确的剂量估计和个性化剂量学。传统上,通过对解剖图像进行操作员密集型器官级分割来完成体模定制。现代网格体模提供了增强的解剖学真实性,这促使它们集成到蒙特卡罗代码中。在这里,我们提出了一种使用基于强度的可变形图像配准在网格参考体模和患者 CT 图像之间生成患者特异性体模/剂量学的自动化策略。这项工作展示了一个概念验证的个性化剂量学工作流程,与手动分割方法进行了比较。
通过对 PSRK-Man 参考体模进行体素重采样并使用相应的亨氏单位 (HU) 参考值定义器官区域,生成线性衰减系数体模。使用 Plastimatch B 样条可变形配准将 HU 体模与患者 CT 扫描进行配准。同时,手动勾勒主要器官以生成用于比较的“真实”患者特异性体模。使用这两种方法计算了蒙特卡罗衍生的支持核医学剂量学的 S 值,并进行了比较。
将派生的 B 样条变换应用于构成 PSRK-Man 的多边形顶点,得到了一个与患者身体轮廓更匹配的变形变体,并且通过 Hausdorff 距离和 Dice 度量评估,大多数器官体积也更匹配。使用粒子和重离子传输代码系统计算的氟-18 变形体模的 S 值与从患者特异性模拟得出的值更吻合。
可变形配准技术可用于创建个性化体模,更好地支持患者特异性剂量学。与手动分割相比,这种方法更容易且更快。我们的研究仅限于概念验证范围,但证明了当有解剖图像(CT)时,可以合理地将个性化体模集成到临床剂量学工作流程中。