文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习与影像组学特征在磨玻璃结节中的比较与融合,以预测CT扫描中I期肺腺癌的侵袭风险

Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.

作者信息

Xia Xianwu, Gong Jing, Hao Wen, Yang Ting, Lin Yeqing, Wang Shengping, Peng Weijun

机构信息

Department of Radiology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China.

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Front Oncol. 2020 Mar 31;10:418. doi: 10.3389/fonc.2020.00418. eCollection 2020.


DOI:10.3389/fonc.2020.00418
PMID:32296645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7136522/
Abstract

For stage-I lung adenocarcinoma, the 5-years disease-free survival (DFS) rates of non-invasive adenocarcinoma (non-IA) is different with invasive adenocarcinoma (IA). This study aims to develop CT image based artificial intelligence (AI) schemes to classify between non-IA and IA nodules, and incorporate deep learning (DL) and radiomics features to improve the classification performance. We collect 373 surgical pathological confirmed ground-glass nodules (GGNs) from 323 patients in two centers. It involves 205 non-IA (including 107 adenocarcinoma and 98 minimally invasive adenocarcinoma), and 168 IA. We first propose a recurrent residual convolutional neural network based on U-Net to segment the GGNs. Then, we build two schemes to classify between non-IA and IA namely, DL scheme and radiomics scheme, respectively. Third, to improve the classification performance, we fuse the prediction scores of two schemes by applying an information fusion method. Finally, we conduct an observer study to compare our scheme performance with two radiologists by testing on an independent dataset. Comparing with DL scheme and radiomics scheme (the area under a receiver operating characteristic curve (AUC): 0.83 ± 0.05, 0.87 ± 0.04), our new fusion scheme (AUC: 0.90 ± 0.03) significant improves the risk classification performance ( < 0.05). In a comparison with two radiologists, our new model yields higher accuracy of 80.3%. The kappa value for inter-radiologist agreement is 0.6. It demonstrates that applying AI method is an effective way to improve the invasiveness risk prediction performance of GGNs. In future, fusion of DL and radiomics features may have a potential to handle the classification task with limited dataset in medical imaging.

摘要

对于I期肺腺癌,非侵袭性腺癌(non-IA)与侵袭性腺癌(IA)的5年无病生存率(DFS)有所不同。本研究旨在开发基于CT图像的人工智能(AI)方案,以区分non-IA和IA结节,并结合深度学习(DL)和影像组学特征来提高分类性能。我们从两个中心的323例患者中收集了373个经手术病理证实的磨玻璃结节(GGN)。其中包括205个non-IA(包括107个腺癌和98个微浸润腺癌)以及168个IA。我们首先提出一种基于U-Net的循环残差卷积神经网络来分割GGN。然后,我们分别构建了两种用于区分non-IA和IA的方案,即DL方案和影像组学方案。第三,为了提高分类性能,我们通过应用信息融合方法来融合两种方案的预测分数。最后,我们进行了一项观察者研究,通过在独立数据集上进行测试,将我们的方案性能与两位放射科医生的性能进行比较。与DL方案和影像组学方案(受试者操作特征曲线下面积(AUC):0.83±0.05,0.87±0.04)相比,我们的新融合方案(AUC:0.90±0.03)显著提高了风险分类性能(P<0.05)。与两位放射科医生相比,我们的新模型具有更高的80.3%的准确率。放射科医生之间的kappa值为0.6。这表明应用AI方法是提高GGN侵袭性风险预测性能的有效途径。未来,DL和影像组学特征的融合可能有潜力处理医学影像中有限数据集的分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/c89f35c0f467/fonc-10-00418-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/7d54483db549/fonc-10-00418-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/1539ff21af89/fonc-10-00418-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/ea7603e093ae/fonc-10-00418-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/fe1f80aee0b6/fonc-10-00418-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/04873a8b6ff3/fonc-10-00418-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/c89f35c0f467/fonc-10-00418-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/7d54483db549/fonc-10-00418-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/1539ff21af89/fonc-10-00418-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/ea7603e093ae/fonc-10-00418-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/fe1f80aee0b6/fonc-10-00418-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/04873a8b6ff3/fonc-10-00418-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/882f/7136522/c89f35c0f467/fonc-10-00418-g0006.jpg

相似文献

[1]
Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan.

Front Oncol. 2020-3-31

[2]
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.

Eur Radiol. 2019-12-6

[3]
Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features.

Phys Med Biol. 2021-3-4

[4]
Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics.

Transl Lung Cancer Res. 2020-8

[5]
Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma.

Med Phys. 2022-10

[6]
Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma.

Eur Radiol. 2020-1-21

[7]
Determining the invasiveness of ground-glass nodules using a 3D multi-task network.

Eur Radiol. 2021-9

[8]
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules.

Front Oncol. 2023-8-17

[9]
Deep Learning-Based Stage-Wise Risk Stratification for Early Lung Adenocarcinoma in CT Images: A Multi-Center Study.

Cancers (Basel). 2021-6-30

[10]
Value of F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules.

EJNMMI Res. 2020-7-13

引用本文的文献

[1]
Deep learning and radiomics fusion for predicting the invasiveness of lung adenocarcinoma within ground glass nodules.

Sci Rep. 2025-8-11

[2]
Diagnostic accuracy of deep learning for the invasiveness assessment of ground-glass nodules with fine segmentation: a systematic review and meta-analysis.

Quant Imaging Med Surg. 2025-4-1

[3]
Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma.

Sci Rep. 2024-12-30

[4]
Prediction of benign and malignant ground glass pulmonary nodules based on multi-feature fusion of attention mechanism.

Front Oncol. 2024-10-9

[5]
Construction and validation of a risk score system for diagnosing invasive adenocarcinoma presenting as pulmonary pure ground-glass nodules: a multi-center cohort study in China.

Quant Imaging Med Surg. 2024-7-1

[6]
Radiomics incorporating deep features for predicting Parkinson's disease in I-Ioflupane SPECT.

EJNMMI Phys. 2024-7-10

[7]
Quantitative analysis of lung lesions using unenhanced chest computed tomography images.

Clin Respir J. 2024-5

[8]
Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review.

Front Oncol. 2024-3-27

[9]
AI/ML advances in non-small cell lung cancer biomarker discovery.

Front Oncol. 2023-12-11

[10]
A graph neural network model for the diagnosis of lung adenocarcinoma based on multimodal features and an edge-generation network.

Quant Imaging Med Surg. 2023-8-1

本文引用的文献

[1]
A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.

Eur Radiol. 2019-12-6

[2]
Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis.

Phys Med Biol. 2019-7-5

[3]
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.

Nat Med. 2019-5-20

[4]
Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.

Radiology. 2018-12-18

[5]
Distinct Clinicopathologic Characteristics and Prognosis Based on the Presence of Ground Glass Opacity Component in Clinical Stage IA Lung Adenocarcinoma.

J Thorac Oncol. 2018-10-25

[6]
Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study.

Med Phys. 2018-11-8

[7]
3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas.

Cancer Res. 2018-10-2

[8]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

[9]
Predictors of Pathologic Tumor Invasion and Prognosis for Ground Glass Opacity Featured Lung Adenocarcinoma.

Ann Thorac Surg. 2018-8-8

[10]
3D convolutional neural network for differentiating pre-invasive lesions from invasive adenocarcinomas appearing as ground-glass nodules with diameters ≤3 cm using HRCT.

Quant Imaging Med Surg. 2018-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索