Qiu Jishen, Cook Sherri, Srubar Wil V, Hubler Mija H, Artier Juliana, Cameron Jeffrey C
Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, USA.
Renewable and Sustainable Energy Institute, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80303, USA.
iScience. 2021 Jan 21;24(2):102083. doi: 10.1016/j.isci.2021.102083. eCollection 2021 Feb 19.
Living building materials (LBMs) utilize microorganisms to produce construction materials that exhibit mechanical and biological properties. A hydrogel-based LBM containing bacteria capable of microbially induced calcium carbonate precipitation (MICP) was recently developed. Here, LBM design factors, i.e., gel/sand ratio, inclusion of trehalose, and MICP pathways, are evaluated. The results show that non-saturated LBM (gel/sand = 0.13) and gel-saturated LBM (gel/sand = 0.30) underwent distinct failure modes. The inclusion of trehalose maintains bacterial viability under ambient conditions with low relative humidity, without affecting mechanical properties of the LBM. Comparison of biotic and abiotic LBM shows that MICP efficiency in this material is subject to the pathway selected: the LBM with heterotrophic ureolytic demonstrated the most mechanical enhancement from the abiotic controls, compared with either ureolytic or CO-concentrating mechanisms from . The study shows that tailoring of LBM properties can be accomplished in a manner that considers both LBM microstructure and MICP pathways.
活性建筑材料(LBMs)利用微生物来生产具有机械性能和生物性能的建筑材料。最近开发出了一种基于水凝胶的LBM,其中含有能够进行微生物诱导碳酸钙沉淀(MICP)的细菌。在此,对LBM的设计因素,即凝胶/沙子比例、海藻糖的添加以及MICP途径进行了评估。结果表明,非饱和LBM(凝胶/沙子 = 0.13)和凝胶饱和LBM(凝胶/沙子 = 0.30)呈现出不同的失效模式。添加海藻糖可在相对湿度较低的环境条件下维持细菌活力,且不影响LBM的机械性能。对生物LBM和非生物LBM的比较表明,该材料中MICP的效率取决于所选择的途径:与自养尿素分解机制或CO浓缩机制相比,具有异养尿素分解作用的LBM在非生物对照中表现出最大的机械增强效果。该研究表明,可以通过同时考虑LBM微观结构和MICP途径的方式来实现对LBM性能的定制。