School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA.
BMC Genomics. 2021 Feb 18;22(1):125. doi: 10.1186/s12864-021-07433-4.
The ongoing COVID-19 outbreak has caused devastating mortality and posed a significant threat to public health worldwide. Despite the severity of this illness and 2.3 million worldwide deaths, the disease mechanism is mostly unknown. Previous studies that characterized differential gene expression due to SARS-CoV-2 infection lacked robust validation. Although vaccines are now available, effective treatment options are still out of reach.
To characterize the transcriptional activity of SARS-CoV-2 infection, a gene signature consisting of 25 genes was generated using a publicly available RNA-Sequencing (RNA-Seq) dataset of cultured cells infected with SARS-CoV-2. The signature estimated infection level accurately in bronchoalveolar lavage fluid (BALF) cells and peripheral blood mononuclear cells (PBMCs) from healthy and infected patients (mean 0.001 vs. 0.958; P < 0.0001). These signature genes were investigated in their ability to distinguish the severity of SARS-CoV-2 infection in a single-cell RNA-Sequencing dataset. TNFAIP3, PPP1R15A, NFKBIA, and IFIT2 had shown bimodal gene expression in various immune cells from severely infected patients compared to healthy or moderate infection cases. Finally, this signature was assessed using the publicly available ConnectivityMap database to identify potential disease mechanisms and drug repurposing candidates. Pharmacological classes of tricyclic antidepressants, SRC-inhibitors, HDAC inhibitors, MEK inhibitors, and drugs such as atorvastatin, ibuprofen, and ketoconazole showed strong negative associations (connectivity score < - 90), highlighting the need for further evaluation of these candidates for their efficacy in treating SARS-CoV-2 infection.
Thus, using the 25-gene SARS-CoV-2 infection signature, the SARS-CoV-2 infection status was captured in BALF cells, PBMCs and postmortem lung biopsies. In addition, candidate SARS-CoV-2 therapies with known safety profiles were identified. The signature genes could potentially also be used to characterize the COVID-19 disease severity in patients' expression profiles of BALF cells.
当前的 COVID-19 疫情大流行造成了毁灭性的死亡率,对全球公共卫生构成了重大威胁。尽管这种疾病的严重程度和全球 230 万人死亡,但疾病机制在很大程度上仍是未知的。以前的研究由于缺乏稳健的验证而无法描述由于 SARS-CoV-2 感染而导致的差异基因表达。尽管现在有疫苗,但有效的治疗方法仍遥不可及。
为了描述 SARS-CoV-2 感染的转录活性,我们使用公共 RNA 测序(RNA-Seq)数据集生成了一个由 25 个基因组成的基因特征,该数据集描述了培养细胞中感染 SARS-CoV-2 的情况。该特征可准确估计健康和感染患者的支气管肺泡灌洗液(BALF)细胞和外周血单核细胞(PBMC)中的感染水平(平均值为 0.001 对 0.958;P < 0.0001)。在单细胞 RNA-Seq 数据集中,我们研究了这些特征基因在区分 SARS-CoV-2 感染严重程度方面的能力。与健康或中度感染病例相比,TNFAIP3、PPP1R15A、NFKBIA 和 IFIT2 在严重感染患者的各种免疫细胞中显示出双峰基因表达。最后,我们使用公开的 ConnectivityMap 数据库评估了该特征,以鉴定潜在的疾病机制和药物再利用候选药物。三环类抗抑郁药、SRC 抑制剂、HDAC 抑制剂、MEK 抑制剂和阿托伐他汀、布洛芬和酮康唑等药物的药理学类别与严重感染患者的基因表达呈强烈负相关(连接分数 < -90),这突出表明需要进一步评估这些候选药物在治疗 SARS-CoV-2 感染方面的功效。
因此,使用 25 个基因 SARS-CoV-2 感染特征,我们可以在 BALF 细胞、PBMC 和肺活检组织中捕获 SARS-CoV-2 感染状态。此外,还确定了具有已知安全性特征的候选 SARS-CoV-2 治疗方法。这些特征基因也可能用于根据 BALF 细胞的患者表达谱来描述 COVID-19 疾病的严重程度。