文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NF-κB 和 p300/CBP 的激活通过诱导 MHC-I 抗原呈递增强癌症化疗免疫治疗。

Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation.

机构信息

Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093.

Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2025840118.


DOI:10.1073/pnas.2025840118
PMID:33602823
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7923353/
Abstract

Many cancers evade immune rejection by suppressing major histocompatibility class I (MHC-I) antigen processing and presentation (AgPP). Such cancers do not respond to immune checkpoint inhibitor therapies (ICIT) such as PD-1/PD-L1 [PD-(L)1] blockade. Certain chemotherapeutic drugs augment tumor control by PD-(L)1 inhibitors through potentiation of T-cell priming but whether and how chemotherapy enhances MHC-I-dependent cancer cell recognition by cytotoxic T cells (CTLs) is not entirely clear. We now show that the lysine acetyl transferases p300/CREB binding protein (CBP) control MHC-I AgPPM expression and neoantigen amounts in human cancers. Moreover, we found that two distinct DNA damaging drugs, the platinoid oxaliplatin and the topoisomerase inhibitor mitoxantrone, strongly up-regulate MHC-I AgPP in a manner dependent on activation of nuclear factor kappa B (NF-κB), p300/CBP, and other transcription factors, but independently of autocrine IFNγ signaling. Accordingly, NF-κB and p300 ablations prevent chemotherapy-induced MHC-I AgPP and abrogate rejection of low MHC-I-expressing tumors by reinvigorated CD8 CTLs. Drugs like oxaliplatin and mitoxantrone may be used to overcome resistance to PD-(L)1 inhibitors in tumors that had "epigenetically down-regulated," but had not permanently lost MHC-I AgPP activity.

摘要

许多癌症通过抑制主要组织相容性复合体 I(MHC-I)抗原加工和呈递(AgPP)来逃避免疫排斥。此类癌症对免疫检查点抑制剂疗法(ICIT)如 PD-1/PD-L1 [PD-(L)1] 阻断无反应。某些化疗药物通过增强 T 细胞启动来增强 PD-(L)1 抑制剂对肿瘤的控制,但化疗是否以及如何增强细胞毒性 T 细胞(CTL)对 MHC-I 依赖性癌细胞的识别尚不完全清楚。我们现在表明,赖氨酸乙酰转移酶 p300/CREB 结合蛋白(CBP)控制人类癌症中的 MHC-I AgPPM 表达和新抗原数量。此外,我们发现两种不同的 DNA 损伤药物,铂类奥沙利铂和拓扑异构酶抑制剂米托蒽醌,以依赖于核因子 kappa B(NF-κB)、p300/CBP 和其他转录因子的方式强烈上调 MHC-I AgPP,但不依赖于自分泌 IFNγ 信号。因此,NF-κB 和 p300 缺失可防止化疗诱导的 MHC-I AgPP,并通过重新激活的 CD8 CTL 消除 MHC-I 表达低的肿瘤的排斥反应。像奥沙利铂和米托蒽醌这样的药物可用于克服对 PD-(L)1 抑制剂的耐药性,这些药物具有“表观遗传下调”,但并未永久失去 MHC-I AgPP 活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/4813491b5baf/pnas.2025840118fig08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/0209725a6650/pnas.2025840118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/0cc15f0df364/pnas.2025840118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/c48e9930c159/pnas.2025840118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/d609332499dc/pnas.2025840118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8145beafef1e/pnas.2025840118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8971e9df3cc1/pnas.2025840118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8bbb01d92c09/pnas.2025840118fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/4813491b5baf/pnas.2025840118fig08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/0209725a6650/pnas.2025840118fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/0cc15f0df364/pnas.2025840118fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/c48e9930c159/pnas.2025840118fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/d609332499dc/pnas.2025840118fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8145beafef1e/pnas.2025840118fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8971e9df3cc1/pnas.2025840118fig06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/8bbb01d92c09/pnas.2025840118fig07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/7923353/4813491b5baf/pnas.2025840118fig08.jpg

相似文献

[1]
Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation.

Proc Natl Acad Sci U S A. 2021-2-23

[2]
Induction of NKG2D ligand expression on tumor cells by CD8 T-cell engagement-mediated activation of nuclear factor-kappa B and p300/CBP-associated factor.

Oncogene. 2019-8-19

[3]
p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer.

Oncogene. 2020-3-23

[4]
Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.

J Immunother Cancer. 2022-6

[5]
Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression.

J Immunol. 2019-8-30

[6]
Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy.

Biochim Biophys Acta Rev Cancer. 2024-9

[7]
Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.

J Immunother Cancer. 2021-12

[8]
Hippo-signaling-controlled MHC class I antigen processing and presentation pathway potentiates antitumor immunity.

Cell Rep. 2024-4-23

[9]
A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma.

Mol Cancer. 2020-1-6

[10]
MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells.

Cell Mol Immunol. 2021-3

引用本文的文献

[1]
Novel tryptophan 2,3-dioxygenase-targeted ruthenium(ii)-indole complex activates immunotherapy and .

Chem Sci. 2025-7-30

[2]
Elucidating DNA Damage-Dependent Immune System Activation.

Int J Mol Sci. 2025-6-18

[3]
NOTCH1 inhibition enhances immunogenicity and sensitizes triple-negative breast cancer to immune checkpoint inhibitors.

Breast Cancer Res. 2025-5-26

[4]
Oxygen vacancy-engineered bimetallic nanozymes for disrupting electron transport chain and synergistic multi-enzyme activity to reverse oxaliplatin resistance in colorectal cancer.

J Nanobiotechnology. 2025-5-16

[5]
Cancer vaccines: current status and future directions.

J Hematol Oncol. 2025-2-17

[6]
TNFAIP2 promotes NF-κB signaling mediate lymph node metastasis of oral squamous cell carcinoma by protecting IKKβ from ubiquitin proteasome degradation.

Cell Commun Signal. 2025-2-13

[7]
A systematic review of advances in preparation, structures, bioactivities, structural-property relationships, and applications of polysaccharides.

Food Chem X. 2025-1-6

[8]
Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity.

Nat Cancer. 2025-2

[9]
Blocking WNT7A Enhances MHC-I Antigen Presentation and Enhances the Effectiveness of Immune Checkpoint Blockade Therapy.

Cancer Immunol Res. 2025-3-4

[10]
Targeting CBP and p300: Emerging Anticancer Agents.

Molecules. 2024-9-24

本文引用的文献

[1]
Consensus guidelines for the definition, detection and interpretation of immunogenic cell death.

J Immunother Cancer. 2020-3

[2]
Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data.

Genome Biol. 2020-2-7

[3]
VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease.

Science. 2019-12-19

[4]
Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study.

J Clin Oncol. 2019-11-27

[5]
Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy.

Nat Med. 2019-11-7

[6]
Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation.

J Clin Invest. 2019-10-1

[7]
Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade.

Cell Res. 2019-9-3

[8]
Insights into the Relationship between Nucleolar Stress and the NF-κB Pathway.

Trends Genet. 2019-8-19

[9]
Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes.

BMC Med Genomics. 2019-7-25

[10]
The Tumor Immune Contexture of Prostate Cancer.

Front Immunol. 2019-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索