Suppr超能文献

基于片段的新型变构MEK1结合剂的发现

Fragment-Based Discovery of Novel Allosteric MEK1 Binders.

作者信息

Di Fruscia Paolo, Edfeldt Fredrik, Shamovsky Igor, Collie Gavin W, Aagaard Anna, Barlind Louise, Börjesson Ulf, Hansson Eva L, Lewis Richard J, Nilsson Magnus K, Öster Linda, Pemberton Josefine, Ripa Lena, Storer R Ian, Käck Helena

机构信息

Structure Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom.

Structure Biophysics & Fragments, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden.

出版信息

ACS Med Chem Lett. 2021 Jan 27;12(2):302-308. doi: 10.1021/acsmedchemlett.0c00563. eCollection 2021 Feb 11.

Abstract

The MEK1 kinase plays a critical role in key cellular processes, and as such, its dysfunction is strongly linked to several human diseases, particularly cancer. MEK1 has consequently received considerable attention as a drug target, and a significant number of small-molecule inhibitors of this kinase have been reported. The majority of these inhibitors target an allosteric pocket proximal to the ATP binding site which has proven to be highly druggable, with four allosteric MEK1 inhibitors approved to date. Despite the significant attention that the MEK1 allosteric site has received, chemotypes which have been shown structurally to bind to this site are limited. With the aim of discovering novel allosteric MEK1 inhibitors using a fragment-based approach, we report here a screening method which resulted in the discovery of multiple allosteric MEK1 binders, one series of which was optimized to sub-μM affinity for MEK1 with promising physicochemical and ADMET properties.

摘要

MEK1激酶在关键细胞过程中发挥着关键作用,因此,其功能障碍与多种人类疾病,尤其是癌症密切相关。因此,MEK1作为药物靶点受到了广泛关注,并且已经报道了大量该激酶的小分子抑制剂。这些抑制剂中的大多数靶向ATP结合位点附近的变构口袋,该口袋已被证明具有高度可成药性,迄今为止已有四种变构MEK1抑制剂获批。尽管MEK1变构位点受到了广泛关注,但在结构上已显示与该位点结合的化学类型却很有限。为了使用基于片段的方法发现新型变构MEK1抑制剂,我们在此报告一种筛选方法,该方法导致发现了多种变构MEK1结合剂,其中一系列结合剂被优化至对MEK1具有亚微摩尔亲和力,并具有良好的物理化学性质和药物代谢及毒性性质。

相似文献

1
Fragment-Based Discovery of Novel Allosteric MEK1 Binders.
ACS Med Chem Lett. 2021 Jan 27;12(2):302-308. doi: 10.1021/acsmedchemlett.0c00563. eCollection 2021 Feb 11.
2
Computational targeting of allosteric site of MEK1 by quinoline-based molecules.
Cell Biochem Funct. 2022 Jul;40(5):481-490. doi: 10.1002/cbf.3709. Epub 2022 May 23.
3
Examining Ligand-Based Stabilization of Proteins in Cells with MEK1 Kinase Inhibitors.
Assay Drug Dev Technol. 2015 Jun;13(5):266-76. doi: 10.1089/adt.2014.614. Epub 2015 Jun 24.
6
Antitumor effects of novel highly hydrophilic and non-ATP-competitive MEK1/2 inhibitor, SMK-17.
Anticancer Drugs. 2012 Jan;23(1):119-30. doi: 10.1097/CAD.0b013e32834c6a33.
7
Allosteric MEK1/2 inhibitors including cobimetanib and trametinib in the treatment of cutaneous melanomas.
Pharmacol Res. 2017 Mar;117:20-31. doi: 10.1016/j.phrs.2016.12.009. Epub 2016 Dec 9.
9
Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase.
Chembiochem. 2020 Nov 2;21(21):3096-3111. doi: 10.1002/cbic.202000246. Epub 2020 Jul 13.
10
Identification of coumarin derivatives as a novel class of allosteric MEK1 inhibitors.
Bioorg Med Chem Lett. 2005 Dec 15;15(24):5467-73. doi: 10.1016/j.bmcl.2005.08.097. Epub 2005 Sep 30.

引用本文的文献

1
repurposing of FDA-approved drugs against MEK1: structural and dynamic insights into lung cancer therapeutics.
Front Pharmacol. 2025 Aug 29;16:1619639. doi: 10.3389/fphar.2025.1619639. eCollection 2025.
2
The identification of functional regions of MEK1 using CRISPR tiling screens.
Commun Biol. 2025 Apr 24;8(1):656. doi: 10.1038/s42003-025-07966-4.
4
Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.
RSC Chem Biol. 2025 Feb 14;6(4):539-554. doi: 10.1039/d4cb00282b. eCollection 2025 Apr 2.
5
Development of Allosteric NIK Ligands from Fragment-Based NMR Screening.
ACS Med Chem Lett. 2023 Nov 3;14(12):1815-1820. doi: 10.1021/acsmedchemlett.3c00429. eCollection 2023 Dec 14.
6
GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier?
Int J Mol Sci. 2023 Apr 19;24(8):7541. doi: 10.3390/ijms24087541.
7
Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases.
J Chem Inf Model. 2023 Apr 24;63(8):2483-2494. doi: 10.1021/acs.jcim.3c00014. Epub 2023 Apr 6.
8
Recent applications of computational methods to allosteric drug discovery.
Front Mol Biosci. 2023 Jan 12;9:1070328. doi: 10.3389/fmolb.2022.1070328. eCollection 2022.
9
Exiting the tunnel of uncertainty: crystal soak to validated hit.
Acta Crystallogr D Struct Biol. 2022 Nov 1;78(Pt 11):1294-1302. doi: 10.1107/S2059798322009986. Epub 2022 Oct 27.
10
Identification of Novel GSK-3β Hits Using Competitive Biophysical Assays.
Int J Mol Sci. 2022 Mar 31;23(7):3856. doi: 10.3390/ijms23073856.

本文引用的文献

1
Dual Role For A MEK Inhibitor As A Modulator Of Inflammation And Host Defense Mechanisms With Potential Therapeutic Application In COPD.
Int J Chron Obstruct Pulmon Dis. 2019 Nov 26;14:2611-2624. doi: 10.2147/COPD.S211619. eCollection 2019.
3
Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators.
Curr Top Med Chem. 2019;19(19):1768-1781. doi: 10.2174/1568026619666190808150039.
5
Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1.
J Med Chem. 2018 Sep 27;61(18):8120-8135. doi: 10.1021/acs.jmedchem.8b01040. Epub 2018 Sep 7.
6
Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes.
Can Respir J. 2018 Jun 19;2018:2732017. doi: 10.1155/2018/2732017. eCollection 2018.
7
Current perspectives in fragment-based lead discovery (FBLD).
Essays Biochem. 2017 Nov 8;61(5):453-464. doi: 10.1042/EBC20170028.
8
Current Development Status of MEK Inhibitors.
Molecules. 2017 Sep 26;22(10):1551. doi: 10.3390/molecules22101551.
9
Allosteric Tuning of Caspase-7: A Fragment-Based Drug Discovery Approach.
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14443-14447. doi: 10.1002/anie.201706959. Epub 2017 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验