Suppr超能文献

深度学习癌症分类中的可解释性问题研究

Overcoming Interpretability in Deep Learning Cancer Classification.

机构信息

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Methods Mol Biol. 2021;2243:297-309. doi: 10.1007/978-1-0716-1103-6_15.

Abstract

Since its inception, deep learning has revolutionized the field of machine learning and data-driven science. One such data-driven science to be transformed by deep learning is genomics. In the past decade, numerous genomics studies have adopted deep learning and its applications range from predicting regulatory elements to cancer classification. Despite its dominating efficacy in these applications, deep learning is not without drawbacks. A prominent shortcoming of deep learning is the lack of interpretability. Hence, the main objective of this study is to address this obstacle in the deep learning cancer classification. Here we adopt a feature importance scoring methodology (Gradient-based class activation mapping or Grad-CAM) on a quasi-recurrent neural network model that classify cancer based on FASTA sequencing data. In this study, we managed to formulate a nucleotide-to-genomic-region Grad-CAM scoring methodology, as well as, validate the use this methodology for the chosen model. Consequently, this allows for the utilization of the Grad-CAM scoring methodology for feature importance in deep learning cancer classification. The results from our study identify potential novel candidate genes, genomic elements, and mechanisms for future cancer research.

摘要

深度学习自诞生以来,彻底改变了机器学习和数据驱动科学领域。其中一个受到深度学习影响的领域是基因组学。在过去的十年中,许多基因组学研究都采用了深度学习,其应用范围从预测调控元件到癌症分类。尽管深度学习在这些应用中具有主导作用,但它并非没有缺点。深度学习的一个突出缺点是缺乏可解释性。因此,本研究的主要目的是解决深度学习癌症分类中的这一障碍。在这里,我们在基于准递归神经网络的模型上采用特征重要性评分方法(基于梯度的类激活映射或 Grad-CAM),该模型基于 FASTA 测序数据对癌症进行分类。在本研究中,我们成功地制定了一种核苷酸到基因组区域 Grad-CAM 评分方法,并验证了该方法在所选模型中的使用。因此,这允许在深度学习癌症分类中使用 Grad-CAM 评分方法来确定特征的重要性。我们的研究结果确定了潜在的新候选基因、基因组元素和未来癌症研究的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验