IEEE Trans Med Imaging. 2021 Jun;40(6):1555-1567. doi: 10.1109/TMI.2021.3060465. Epub 2021 Jun 1.
Kidney volume is an essential biomarker for a number of kidney disease diagnoses, for example, chronic kidney disease. Existing total kidney volume estimation methods often rely on an intermediate kidney segmentation step. On the other hand, automatic kidney localization in volumetric medical images is a critical step that often precedes subsequent data processing and analysis. Most current approaches perform kidney localization via an intermediate classification or regression step. This paper proposes an integrated deep learning approach for (i) kidney localization in computed tomography scans and (ii) segmentation-free renal volume estimation. Our localization method uses a selection-convolutional neural network that approximates the kidney inferior-superior span along the axial direction. Cross-sectional (2D) slices from the estimated span are subsequently used in a combined sagittal-axial Mask-RCNN that detects the organ bounding boxes on the axial and sagittal slices, the combination of which produces a final 3D organ bounding box. Furthermore, we use a fully convolutional network to estimate the kidney volume that skips the segmentation procedure. We also present a mathematical expression to approximate the 'volume error' metric from the 'Sørensen-Dice coefficient.' We accessed 100 patients' CT scans from the Vancouver General Hospital records and obtained 210 patients' CT scans from the 2019 Kidney Tumor Segmentation Challenge database to validate our method. Our method produces a kidney boundary wall localization error of ~2.4mm and a mean volume estimation error of ~5%.
肾脏体积是许多肾脏疾病诊断的重要生物标志物,例如慢性肾脏病。现有的总肾脏体积估计方法通常依赖于中间的肾脏分割步骤。另一方面,在容积医学图像中自动进行肾脏定位是一个关键步骤,通常先于后续的数据处理和分析。目前大多数方法通过中间的分类或回归步骤进行肾脏定位。本文提出了一种集成深度学习方法,用于(i) 在 CT 扫描中进行肾脏定位,以及 (ii) 进行无分割的肾脏体积估计。我们的定位方法使用选择卷积神经网络,沿轴向近似肾脏的上下范围。从估计的范围中提取的横截面(2D)切片随后用于联合矢状轴和轴向 Mask-RCNN,以在轴向和矢状切片上检测器官的边界框,两者的组合生成最终的 3D 器官边界框。此外,我们使用全卷积网络来估计跳过分割过程的肾脏体积。我们还提出了一种数学表达式,用于从“ Sørensen-Dice 系数”近似“体积误差”度量。我们从温哥华综合医院的记录中访问了 100 名患者的 CT 扫描,从 2019 年肾脏肿瘤分割挑战赛数据库中获得了 210 名患者的 CT 扫描,以验证我们的方法。我们的方法产生的肾脏边界壁定位误差约为 2.4mm,平均体积估计误差约为 5%。