Suppr超能文献

基于深度神经网络的 CT 图像肾脏分割

Kidney segmentation from computed tomography images using deep neural network.

机构信息

Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Brazil.

Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Brazil.

出版信息

Comput Biol Med. 2020 Aug;123:103906. doi: 10.1016/j.compbiomed.2020.103906. Epub 2020 Jul 11.

Abstract

BACKGROUND

The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. Manual segmentation of the kidneys is extremely time-consuming and prone to variability between different specialists due to their heterogeneity. Because of this hard work, computational techniques, such as deep convolutional neural networks, have become popular in kidney segmentation tasks to assist in the early diagnosis of kidney tumors. In this study, we propose an automatic method to delimit the kidneys in computed tomography (CT) images using image processing techniques and deep convolutional neural networks (CNNs) to minimize false positives.

METHODS

The proposed method has four main steps: (1) acquisition of the KiTS19 dataset, (2) scope reduction using AlexNet, (3) initial segmentation using U-Net 2D, and (4) false positive reduction using image processing to maintain the largest elements (kidneys).

RESULTS

The proposed method was evaluated in 210 CTs from the KiTS19 database and obtained the best result with an average Dice coefficient of 96.33%, an average Jaccard index of 93.02%, an average sensitivity of 97.42%, an average specificity of 99.94% and an average accuracy of 99.92%. In the KiTS19 challenge, it presented an average Dice coefficient of 93.03%.

CONCLUSION

In our method, we demonstrated that the kidney segmentation problem in CT can be solved efficiently using deep neural networks to define the scope of the problem and segment the kidneys with high precision and with the use of image processing techniques to reduce false positives.

摘要

背景

肾脏和肾肿瘤的精确分割有助于医学专家诊断疾病并改善治疗计划,这在临床实践中是非常需要的。手动分割肾脏非常耗时,并且由于其异质性,不同专家之间存在可变性。由于这项艰苦的工作,计算技术,如深度卷积神经网络,在肾脏分割任务中变得流行,以帮助早期诊断肾肿瘤。在这项研究中,我们提出了一种使用图像处理技术和深度卷积神经网络(CNN)自动分割 CT 图像中肾脏的方法,以最小化假阳性。

方法

所提出的方法有四个主要步骤:(1)获取 KiTS19 数据集,(2)使用 AlexNet 进行范围缩小,(3)使用 U-Net 2D 进行初始分割,(4)使用图像处理减少假阳性以保持最大元素(肾脏)。

结果

所提出的方法在 KiTS19 数据库中的 210 个 CT 上进行了评估,并获得了最佳结果,平均 Dice 系数为 96.33%,平均 Jaccard 指数为 93.02%,平均灵敏度为 97.42%,平均特异性为 99.94%和平均准确率为 99.92%。在 KiTS19 挑战赛中,它的平均 Dice 系数为 93.03%。

结论

在我们的方法中,我们证明了可以使用深度神经网络有效地解决 CT 中的肾脏分割问题,以定义问题的范围,并以高精度分割肾脏,并使用图像处理技术减少假阳性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验