School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
School of Information Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China.
Med Phys. 2024 Oct;51(10):7153-7170. doi: 10.1002/mp.17339. Epub 2024 Aug 1.
When applied to thermoacoustic imaging (TAI), the delay-and-sum (DAS) algorithm produces strong sidelobes due to its disadvantages of uniform aperture weighting. As a result, the quality of TAI images recovered by DAS is often severely degraded by strong non-coherent clutter, which restricts the development and application of TAI.
To address this issue, we propose an adaptive complementary neighboring sub-aperture (NSA) beamforming algorithm for TAI.
In NSA, we introduce a coordinate system transformation when calculating the normalized cross-correlation (NCC) matrix. This approach enables the computation of the NCC coefficient within the specified kernel without complex coordinate calculations. We first conducted the numerical simulation experiment to validate NSA using a tree branch phantom. In addition, we also conducted phantom (five sauce tubes), ex vivo (ablation needle in ex vivo porcine liver), and in vivo (human arm) TAI experiments using our TAI system with a center frequency of 3 GHz.
In the numerical simulation experiment, the structural similarity index (SSIM) value for NSA is increased from 0.37828 for DAS to 0.75492. In the point target phantom TAI experiment, the generalized contrast-to-noise ratio (gCNR) value for NSA is increased from 0.936 for DAS to 0.962. The experimental results show that NSA can recover clearer thermoacoustic images compared to DAS. In the ex vivo TAI experiment, the full width at half maxima (FWHM) of an ablation needle (diameter = 1.5 mm) for coherence factor (CF) weighted DAS and NSA are 0.9 and 1.3 mm, respectively. Furthermore, in the in vivo TAI experiment, CF reduces the signals within the arm compared to NSA. Therefore, compared with CF, NSA can maintain the integrity of target information in TAI while effectively suppressing non-coherent background clutter.
NSA can effectively reduce non-coherent background noise while ensuring the completeness of the target information. So, NSA offers the potential to provide high-quality thermoacoustic images and further advance their clinical application.
延迟求和(DAS)算法应用于热声成像(TAI)时,由于孔径均匀加权的缺点会产生很强的旁瓣。因此,DAS 恢复的 TAI 图像质量常常受到强非相干杂波的严重影响,这限制了 TAI 的发展和应用。
针对这一问题,我们提出了一种用于 TAI 的自适应互补邻域子孔径(NSA)波束形成算法。
在 NSA 中,我们在计算归一化互相关(NCC)矩阵时引入了坐标系变换。这种方法使得可以在指定的核内计算 NCC 系数,而无需复杂的坐标计算。我们首先使用树枝状仿体进行了数值模拟实验,验证了 NSA 的有效性。此外,我们还使用中心频率为 3GHz 的 TAI 系统进行了仿体(五个酱汁管)、离体(离体猪肝中的消融针)和体内(人臂)的 TAI 实验。
在数值模拟实验中,NSA 的结构相似性指数(SSIM)值从 DAS 的 0.37828 增加到 0.75492。在点目标仿体 TAI 实验中,NSA 的广义对比噪声比(gCNR)值从 DAS 的 0.936 增加到 0.962。实验结果表明,与 DAS 相比,NSA 可以恢复更清晰的热声图像。在离体 TAI 实验中,相干因子(CF)加权 DAS 和 NSA 的消融针(直径=1.5mm)的半峰全宽(FWHM)分别为 0.9mm 和 1.3mm。此外,在体内 TAI 实验中,CF 与 NSA 相比,降低了手臂内的信号。因此,与 CF 相比,NSA 可以在有效抑制非相干背景杂波的同时,保持 TAI 中目标信息的完整性。
NSA 可以有效降低非相干背景噪声,同时确保目标信息的完整性。因此,NSA 有望提供高质量的热声图像,并进一步推动其临床应用。