Suppr超能文献

针对白血病细胞亚群选择性共抑制的个体化患者设计。

Patient-tailored design for selective co-inhibition of leukemic cell subpopulations.

作者信息

Ianevski Aleksandr, Lahtela Jenni, Javarappa Komal K, Sergeev Philipp, Ghimire Bishwa R, Gautam Prson, Vähä-Koskela Markus, Turunen Laura, Linnavirta Nora, Kuusanmäki Heikki, Kontro Mika, Porkka Kimmo, Heckman Caroline A, Mattila Pirkko, Wennerberg Krister, Giri Anil K, Aittokallio Tero

机构信息

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.

Helsinki Institute for Information Technology (HIIT), Department of Computer Science, Aalto University, Espoo, Finland.

出版信息

Sci Adv. 2021 Feb 19;7(8). doi: 10.1126/sciadv.abe4038. Print 2021 Feb.

Abstract

The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.

摘要

广泛耐药性需要合理的方法来设计个性化的联合治疗方案,利用患者特异性的治疗脆弱性来选择性地靶向驱动疾病的细胞亚群。为了解决组合爆炸的挑战,我们实施了一种有效的机器学习方法,通过将单细胞RNA测序与在稀缺的患者来源原代细胞中进行的体外单药测试相结合,优先选择具有所需协同效应-疗效-毒性平衡的患者定制药物组合。当应用于两个诊断性和两个难治性急性髓系白血病(AML)患者病例时,每个病例都有不同的遗传背景,我们准确地预测了患者特异性组合,这些组合不仅导致协同性癌细胞共抑制,而且能够靶向在疾病发病机制或治疗方案的不同阶段出现的特定AML细胞亚群。我们的功能精准肿瘤学方法提供了一种无偏倚的手段,用于系统地识别个性化联合方案,该方案选择性地共同抑制白血病细胞,同时避免抑制非恶性细胞,从而增加其临床转化的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c127/7895436/e279894379b7/abe4038-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验