Suppr超能文献

基于单细胞转录组的个体化肿瘤联合治疗优化。

Personalized tumor combination therapy optimization using the single-cell transcriptome.

机构信息

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

出版信息

Genome Med. 2023 Dec 1;15(1):105. doi: 10.1186/s13073-023-01256-6.

Abstract

BACKGROUND

The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment.

METHODS

Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable solution to stratify individual patient samples based on quantitative evaluation of their personalized immune microenvironment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, and finally prioritize them for personalized clinical use based on bipartition graph optimization.

RESULTS

We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples.

CONCLUSIONS

Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept study to predict potential drug combinations for further experimental validation and clinical usage using the single-cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web server of comboSC for both clinical and research users is available at www.combosc.top . The source code is also available on GitHub at https://github.com/bm2-lab/comboSC .

摘要

背景

利用转录组测序对个体肿瘤和免疫微环境进行精确描述,为成功实施个性化癌症治疗提供了绝佳机会。然而,癌症治疗反应通常通过体外检测或批量转录组来进行特征描述,这些方法忽略了体内恶性肿瘤的异质性和免疫微环境,这促使我们需要使用单细胞转录组来进行个性化癌症治疗。

方法

在这里,我们提出了 comboSC,这是一项计算概念验证研究,旨在探索使用单细胞转录组优化个性化癌症联合治疗的可行性。comboSC 为基于单细胞 RNA 测序对个体患者样本进行个性化免疫微环境的定量评估提供了一种可行的解决方案,并根据从大量小分子和药物中识别出的协同药物/小分子组合或可与免疫检查点抑制剂配对以增强免疫治疗的小分子,对其进行分层,最大限度地提高体外细胞反应的转化潜力,最后基于二分图优化对其进行个性化临床使用的优先级排序。

结果

我们将 comboSC 应用于从 15 种癌症类型的 119 个肿瘤样本中获得的 119 个公开可用的单细胞转录组数据集,并通过文献证据、挖掘临床试验数据、对患者来源的细胞系数据进行扰动,最终通过体内样本对预测的药物组合进行验证。

结论

总的来说,comboSC 提供了一种可行的一站式计算原型和概念验证研究,用于通过单细胞转录组预测潜在的药物组合,以便进一步进行实验验证和临床应用,这将通过减少从大量药物组合空间中筛选的时间并为个体患者节省宝贵的治疗时间,从而促进和加速个性化肿瘤治疗。comboSC 的一个方便临床和研究用户使用的网络服务器可在 www.combosc.top 上获得,其源代码也可在 GitHub 上的 https://github.com/bm2-lab/comboSC 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5784/10691165/1ce46bfbc422/13073_2023_1256_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验