Suppr超能文献

利用机器学习从大规模评估日志数据中发现行为洞察。

Discovering action insights from large-scale assessment log data using machine learning.

作者信息

Yun Minyoung, Jeon Minjeong, Yang Heyoung

机构信息

Laboratory PIMM, Arts et Métieres Paris Tech, Paris, France.

IntelWind, Berkeley, USA.

出版信息

Sci Rep. 2025 Aug 19;15(1):30412. doi: 10.1038/s41598-025-14802-6.

Abstract

This study introduces a novel machine learning algorithm that combines natural language processing techniques, such as Word2Vec and Doc2Vec, with neural networks to identify and validate significant actions within human action sequences. Using the 2012 Program for the International Assessment of Adult Competencies dataset, the algorithm visualizes and analyzes action sequences in a 2D vector space to uncover high-impact behaviors that influence performance. The methodology, validated across two problem sets ("Party Invitation" and "Club Membership"), successfully distinguishes performance groups by focusing on critical actions, leading to enhanced classification accuracy (up to 94.6%) and clustering coherence (silhouette score of 0.491). This approach demonstrates potential applications in personalized education, healthcare diagnostics, and consumer behavior prediction, advancing the understanding of human behavior through digital footprints.

摘要

本研究引入了一种新颖的机器学习算法,该算法将诸如Word2Vec和Doc2Vec等自然语言处理技术与神经网络相结合,以识别和验证人类动作序列中的重要动作。利用2012年成人能力国际评估项目数据集,该算法在二维向量空间中可视化并分析动作序列,以发现影响表现的高影响力行为。该方法在两个问题集(“派对邀请”和“俱乐部会员资格”)上得到验证,通过关注关键动作成功区分了表现组,从而提高了分类准确率(高达94.6%)和聚类一致性(轮廓系数为0.491)。这种方法在个性化教育、医疗诊断和消费者行为预测中展示了潜在应用,通过数字足迹增进了对人类行为的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验