Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
Dev Neurosci. 2024;46(2):136-144. doi: 10.1159/000530299. Epub 2023 Jul 19.
Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.
脑电(EEG)的定量分析是新生儿脑病(NE)生物标志物的潜在来源。然而,由于用于计算 qEEG 特征的个体化技术或 EEG 数据的劳动密集型预选,先前使用 qEEG 进行 NE 的研究在其普遍性方面受到限制。我们使用市售软件对 2018 年 4 月 20 日至 2019 年 11 月 4 日期间接受 72 小时治疗性低温治疗(TH)的 NE 新生儿的 EEG 进行了全自动方法的试点,以计算抑制比(SR)、绝对 delta 功率和相对 delta、theta、alpha 和 beta 功率。我们研究了 qEEG 与脑病程度(改良 Sarnat 评分)、TH 后神经影像学异常严重程度(国家儿童健康与发展研究所新生儿研究网络 [NICHD-NRN] 评分)和癫痫发作的相关性。38 例患者中有 30 例符合纳入标准。更严重的改良 Sarnat 评分与 TH 所有阶段的 SR 更高、除复温外所有阶段的绝对 delta 功率更低以及 TH 的最后 24 小时内的相对 delta 功率更低相关。在 21 例具有神经影像学数据的患者中,NICHD-NRN 评分更差与所有阶段的 SR 更高、绝对 delta 功率更低和相对 beta 功率更高相关。在进行多次比较校正后,qEEG 特征与癫痫发作的发生没有显著相关性。我们的结果与先前使用 qEEG 进行 NE 的研究结果一致,并支持自动化 qEEG 分析作为一种可访问、可推广的方法,用于生成 NE 生物标志物和对 TH 的反应。此外,我们发现,在大脑损伤更严重的新生儿中,相对频率组成不成熟的证据,表明自动化 qEEG 分析可能在评估大脑成熟度方面有一定的作用。