Smith Justin S, Nebgen Benjamin, Mathew Nithin, Chen Jie, Lubbers Nicholas, Burakovsky Leonid, Tretiak Sergei, Nam Hai Ah, Germann Timothy, Fensin Saryu, Barros Kipton
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
Nat Commun. 2021 Feb 23;12(1):1257. doi: 10.1038/s41467-021-21376-0.
Machine learning, trained on quantum mechanics (QM) calculations, is a powerful tool for modeling potential energy surfaces. A critical factor is the quality and diversity of the training dataset. Here we present a highly automated approach to dataset construction and demonstrate the method by building a potential for elemental aluminum (ANI-Al). In our active learning scheme, the ML potential under development is used to drive non-equilibrium molecular dynamics simulations with time-varying applied temperatures. Whenever a configuration is reached for which the ML uncertainty is large, new QM data is collected. The ML model is periodically retrained on all available QM data. The final ANI-Al potential makes very accurate predictions of radial distribution function in melt, liquid-solid coexistence curve, and crystal properties such as defect energies and barriers. We perform a 1.3M atom shock simulation and show that ANI-Al force predictions shine in their agreement with new reference DFT calculations.
基于量子力学(QM)计算训练的机器学习是用于势能面建模的强大工具。一个关键因素是训练数据集的质量和多样性。在此,我们提出一种高度自动化的数据集构建方法,并通过构建元素铝的势能(ANI-Al)来演示该方法。在我们的主动学习方案中,正在开发的机器学习势能用于驱动随时间变化的施加温度下的非平衡分子动力学模拟。每当达到机器学习不确定性较大的构型时,就会收集新的量子力学数据。机器学习模型会定期根据所有可用的量子力学数据进行重新训练。最终的ANI-Al势能对熔体中的径向分布函数、液固共存曲线以及晶体性质(如缺陷能量和势垒)做出了非常准确的预测。我们进行了一次包含130万个原子的冲击模拟,并表明ANI-Al力预测与新的参考密度泛函理论(DFT)计算结果高度吻合。