Suppr超能文献

基于机器学习的霉酚酸暴露预测。

Mycophenolic Acid Exposure Prediction Using Machine Learning.

机构信息

Pharmacology and Transplantation, UMR1248, INSERM, Université de Limoges, Limoges, France.

Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France.

出版信息

Clin Pharmacol Ther. 2021 Aug;110(2):370-379. doi: 10.1002/cpt.2216. Epub 2021 Apr 6.

Abstract

Therapeutic drug monitoring of mycophenolic acid (MPA) based on area under the curve (AUC) is well-established and machine learning (ML) approaches could help to estimate AUC. The aim of this work is to estimate the AUC of MPA in organ transplant patients using extreme gradient boosting (Xgboost R package) ML models. A total of 12,877 MPA AUC from 0 to 12 hours (AUC ) requests from 6,884 patients sent to our Immunosuppressant Bayesian Dose Adjustment expert system (https://abis.chu-limoges.fr) for AUC estimation and dose recommendation based on MPA concentrations measured at least at three sampling times (~ 20 minutes, 1 and 3 hours after dosing) were used to develop two ML models based on two or three concentrations. Data were split into a training set (75%) and a test set (25%) and the Xgboost models in the training set with the lowest root mean squared error (RMSE) in a 10-fold cross-validation experiment were evaluated in the test set and in 4 independent full-pharmacokinetic (PK) datasets from renal or heart transplant recipients. ML models based on two or three concentrations, differences between these concentrations, relative deviations from theoretical times of sampling, presence of a delayed absorption peak, and five covariates (dose, type of transplantation, associated immunosuppressant, age, and time between transplantation and sampling) yielded accurate AUC estimation performances in the test datasets (relative bias < 5% and relative RMSE < 20%) and better performance than MAP Bayesian estimation in the four independent full-PK datasets. The Xgboost ML models described allow accurate estimation of MPA AUC and can be used for routine exposure estimation and dose adjustment and will soon be implemented in a dedicated web interface.

摘要

基于曲线下面积(AUC)的霉酚酸(MPA)治疗药物监测已经得到充分确立,机器学习(ML)方法可以帮助估计 AUC。本研究旨在使用极端梯度增强(Xgboost R 包)ML 模型来估计器官移植患者 MPA 的 AUC。共使用了 6884 名患者的 12877 份 MPA 0 至 12 小时 AUC 请求(AUC)数据,这些数据是通过我们的免疫抑制剂贝叶斯剂量调整专家系统(https://abis.chu-limoges.fr)发送的,用于根据至少三个采样时间点(~20 分钟、给药后 1 小时和 3 小时)测量的 MPA 浓度来估计 AUC 并推荐剂量。数据分为训练集(75%)和测试集(25%),在 10 折交叉验证实验中,训练集中具有最低均方根误差(RMSE)的 Xgboost 模型在测试集中以及 4 个来自肾或心脏移植受者的独立全药代动力学(PK)数据集进行了评估。基于两个或三个浓度、这些浓度之间的差异、与理论采样时间的相对偏差、是否存在延迟吸收峰以及五个协变量(剂量、移植类型、联合免疫抑制剂、年龄和移植与采样之间的时间)的 ML 模型在测试数据集(相对偏差<5%,相对 RMSE<20%)中具有准确的 AUC 估计性能,并且在四个独立的全 PK 数据集中的表现优于 MAP 贝叶斯估计。描述的 Xgboost ML 模型允许准确估计 MPA AUC,可以用于常规暴露估计和剂量调整,并且很快将在专用的网络界面中实施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验