Suppr超能文献

基于联合连接的稀疏非负矩阵分解的阿尔茨海默病影像基因组学数据整合研究。

Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization.

机构信息

College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, P. R. China.

出版信息

J Mol Neurosci. 2022 Feb;72(2):255-272. doi: 10.1007/s12031-021-01888-6. Epub 2021 Aug 19.

Abstract

Imaging genetics reveals the connection between microscopic genetics and macroscopic imaging, enabling the identification of disease biomarkers. In this work, we make full use of prior knowledge that has significant reference value for investigating the correlation between the brain and genetics to explore more biologically substantial biomarkers. In this paper, we propose joint-connectivity-based sparse nonnegative matrix factorization (JCB-SNMF). The algorithm simultaneously projects structural magnetic resonance imaging (sMRI), single-nucleotide polymorphism sites (SNPs), and gene expression data onto a common feature space, where heterogeneous variables with large coefficients in the same projection direction form a common module. In addition, the connectivity information for each region of the brain and genetic data are added as prior knowledge to identify regions of interest (ROIs), SNPs, and gene-related risks related to Alzheimer's disease (AD) patients. GraphNet regularization increases the anti-noise performance of the algorithm and the biological interpretability of the results. The simulation results show that compared with other NMF-based algorithms (JNMF, JSNMNMF), JCB-SNMF has better anti-noise performance and can identify and predict biomarkers closely related to AD from significant modules. By constructing a protein-protein interaction (PPI) network, we identified SF3B1, RPS20, and RBM14 as potential biomarkers of AD. We also found some significant SNP-ROI and gene-ROI pairs. Among them, two SNPs rs4472239 and rs11918049 and three genes KLHL8, ZC3H11A, and OSGEPL1 may have effects on the gray matter volume of multiple brain regions. This model provides a new way to further integrate multimodal impact genetic data to identify complex disease association patterns.

摘要

影像遗传学揭示了微观遗传学和宏观影像学之间的联系,使疾病生物标志物的识别成为可能。在这项工作中,我们充分利用了具有重要参考价值的先验知识,来研究大脑和遗传学之间的相关性,以探索更具生物学意义的生物标志物。本文提出了基于联合连接的稀疏非负矩阵分解(JCB-SNMF)算法。该算法同时将结构磁共振成像(sMRI)、单核苷酸多态性(SNP)和基因表达数据投影到一个共同的特征空间中,其中在同一投影方向上具有较大系数的异质变量形成一个共同的模块。此外,还添加了大脑各区域的连接信息和遗传数据作为先验知识,以识别与阿尔茨海默病(AD)患者相关的感兴趣区域(ROI)、SNP 和基因相关风险。GraphNet 正则化提高了算法的抗噪性能和结果的生物学可解释性。仿真结果表明,与其他基于 NMF 的算法(JNMF、JSNMNMF)相比,JCB-SNMF 具有更好的抗噪性能,可以从显著模块中识别和预测与 AD 密切相关的生物标志物。通过构建蛋白质-蛋白质相互作用(PPI)网络,我们确定了 SF3B1、RPS20 和 RBM14 是 AD 的潜在生物标志物。我们还发现了一些与 SNP-ROI 和基因-ROI 相关的显著对。其中,两个 SNP rs4472239 和 rs11918049 以及三个基因 KLHL8、ZC3H11A 和 OSGEPL1 可能对多个大脑区域的灰质体积有影响。该模型为进一步整合多模态影响遗传数据以识别复杂疾病关联模式提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验