Suppr超能文献

基于动脉瘤监测期间计算机断层扫描图像的几何评估预测腹主动脉瘤生长。

Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerized Tomography Images Acquired During the Aneurysm Surveillance Period.

机构信息

Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.

Department of Engineering Science, University, of Oxford, Oxford, United Kingdom.

出版信息

Ann Surg. 2023 Jan 1;277(1):e175-e183. doi: 10.1097/SLA.0000000000004711. Epub 2020 Dec 29.

Abstract

OBJECTIVE

We investigated the utility of geometric features for future AAA growth prediction.

BACKGROUND

Novel methods for growth prediction of AAA are recognized as a research priority. Geometric feature have been used to predict cerebral aneurysm rupture, but not examined as predictor of AAA growth.

METHODS

Computerized tomography (CT) scans from patients with infra-renal AAAs were analyzed. Aortic volumes were segmented using an automated pipeline to extract AAA diameter (APD), undulation index (UI), and radius of curvature (RC). Using a prospectively recruited cohort, we first examined the relation between these geometric measurements to patients' demographic features (n = 102). A separate 192 AAA patients with serial CT scans during AAA surveillance were identified from an ongoing clinical database. Multinomial logistic and multiple linear regression models were trained and optimized to predict future AAA growth in these patients.

RESULTS

There was no correlation between the geometric measurements and patients' demographic features. APD (Spearman r = 0.25, P < 0.05), UI (Spearman r = 0.38, P < 0.001) and RC (Spearman r =-0.53, P < 0.001) significantly correlated with annual AAA growth. Using APD, UI, and RC as 3 input variables, the area under receiver operating characteristics curve for predicting slow growth (<2.5 mm/yr) or fast growth (>5 mm/yr) at 12 months are 0.80 and 0.79, respectively. The prediction or growth rate is within 2 mm error in 87% of cases.

CONCLUSIONS

Geometric features of an AAA can predict its future growth. This method can be applied to routine clinical CT scans acquired from patients during their AAA surveillance pathway.

摘要

目的

研究几何特征在未来 AAA 生长预测中的应用。

背景

新型 AAA 生长预测方法被认为是研究重点。几何特征已用于预测脑动脉瘤破裂,但尚未作为 AAA 生长的预测因子进行检查。

方法

分析了患有肾下型 AAA 的患者的计算机断层扫描(CT)扫描。使用自动化管道对主动脉体积进行分割,以提取 AAA 直径(APD)、波动指数(UI)和曲率半径(RC)。使用前瞻性招募的队列,我们首先检查了这些几何测量值与患者人口统计学特征之间的关系(n=102)。从正在进行的临床数据库中确定了另外 192 名在 AAA 监测期间有连续 CT 扫描的 AAA 患者。在这些患者中,使用多项逻辑回归和多元线性回归模型进行训练和优化,以预测未来的 AAA 生长。

结果

几何测量值与患者的人口统计学特征之间没有相关性。APD(Spearman r=0.25,P<0.05)、UI(Spearman r=0.38,P<0.001)和 RC(Spearman r=-0.53,P<0.001)与 AAA 的年度生长显著相关。使用 APD、UI 和 RC 作为 3 个输入变量,预测 12 个月时生长缓慢(<2.5mm/yr)或快速(>5mm/yr)的受试者工作特征曲线下面积分别为 0.80 和 0.79。在 87%的情况下,预测或增长率的误差在 2mm 以内。

结论

AAA 的几何特征可以预测其未来的生长。这种方法可以应用于患者在 AAA 监测途径中常规获得的临床 CT 扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc4/8691375/08d7f14079ae/sla-277-e175-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验