Suppr超能文献

开发和验证一种预测模型,用于预测 COVID-19 住院患者 30 天死亡率:COVID-19 SEIMC 评分。

Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: the COVID-19 SEIMC score.

机构信息

Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain

Clinical Pharmacology, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain.

出版信息

Thorax. 2021 Sep;76(9):920-929. doi: 10.1136/thoraxjnl-2020-216001. Epub 2021 Feb 25.

Abstract

OBJECTIVE

To develop and validate a prediction model of mortality in patients with COVID-19 attending hospital emergency rooms.

DESIGN

Multivariable prognostic prediction model.

SETTING

127 Spanish hospitals.

PARTICIPANTS

Derivation (DC) and external validation (VC) cohorts were obtained from multicentre and single-centre databases, including 4035 and 2126 patients with confirmed COVID-19, respectively.

INTERVENTIONS

Prognostic variables were identified using multivariable logistic regression.

MAIN OUTCOME MEASURES

30-day mortality.

RESULTS

Patients' characteristics in the DC and VC were median age 70 and 61 years, male sex 61.0% and 47.9%, median time from onset of symptoms to admission 5 and 8 days, and 30-day mortality 26.6% and 15.5%, respectively. Age, low age-adjusted saturation of oxygen, neutrophil-to-lymphocyte ratio, estimated glomerular filtration rate by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, dyspnoea and sex were the strongest predictors of mortality. Calibration and discrimination were satisfactory with an area under the receiver operating characteristic curve with a 95% CI for prediction of 30-day mortality of 0.822 (0.806-0.837) in the DC and 0.845 (0.819-0.870) in the VC. A simplified score system ranging from 0 to 30 to predict 30-day mortality was also developed. The risk was considered to be low with 0-2 points (0%-2.1%), moderate with 3-5 (4.7%-6.3%), high with 6-8 (10.6%-19.5%) and very high with 9-30 (27.7%-100%).

CONCLUSIONS

A simple prediction score, based on readily available clinical and laboratory data, provides a useful tool to predict 30-day mortality probability with a high degree of accuracy among hospitalised patients with COVID-19.

摘要

目的

开发和验证一个用于预测 COVID-19 急诊患者死亡率的预测模型。

设计

多变量预后预测模型。

地点

127 家西班牙医院。

参与者

来自多中心和单中心数据库的推导(DC)和外部验证(VC)队列分别纳入了 4035 例和 2126 例确诊 COVID-19 患者。

干预措施

使用多变量逻辑回归识别预后变量。

主要观察指标

30 天死亡率。

结果

DC 和 VC 中的患者特征分别为年龄中位数 70 岁和 61 岁,男性比例 61.0%和 47.9%,从症状发作到入院的中位时间为 5 天和 8 天,30 天死亡率为 26.6%和 15.5%。年龄、低校正氧饱和度、中性粒细胞与淋巴细胞比值、慢性肾脏病流行病学合作组(CKD-EPI)方程估算的肾小球滤过率、呼吸困难和性别是死亡率的最强预测因素。校准和区分在接受者操作特征曲线下的面积令人满意,30 天死亡率预测的 95%置信区间为 0.822(0.806-0.837),VC 为 0.845(0.819-0.870)。还开发了一种从 0 到 30 分的简化评分系统来预测 30 天死亡率。风险被认为很低(0-2 分,0%-2.1%),中等(3-5 分,4.7%-6.3%),高(6-8 分,10.6%-19.5%),很高(9-30 分,27.7%-100%)。

结论

一种简单的预测评分,基于易于获得的临床和实验室数据,为预测 COVID-19 住院患者 30 天死亡率提供了一种准确且有用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e44a/8372394/5907c3319a08/thoraxjnl-2020-216001f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验