Suppr超能文献

系统和计算鉴定粗尾蝎长非编码 RNA。

Systematic and computational identification of Androctonus crassicauda long non-coding RNAs.

机构信息

Department of Venomous Animals and Anti-Venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.

Department of Venomous Animals and Anti-Venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

出版信息

Sci Rep. 2021 Feb 25;11(1):4720. doi: 10.1038/s41598-021-83815-8.

Abstract

The potential function of long non-coding RNAs in regulating neighbor protein-coding genes has attracted scientists' attention. Despite the important role of lncRNAs in biological processes, a limited number of studies focus on non-model animal lncRNAs. In this study, we used a stringent step-by-step filtering pipeline and machine learning-based tools to identify the specific Androctonus crassicauda lncRNAs and analyze the features of predicted scorpion lncRNAs. 13,401 lncRNAs were detected using pipeline in A. crassicauda transcriptome. The blast results indicated that the majority of these lncRNAs sequences (12,642) have no identifiable orthologs even in closely related species and those considered as novel lncRNAs. Compared to lncRNA prediction tools indicated that our pipeline is a helpful approach to distinguish protein-coding and non-coding transcripts from RNA sequencing data of species without reference genomes. Moreover, analyzing lncRNA characteristics in A. crassicauda uncovered that lower protein-coding potential, lower GC content, shorter transcript length, and less number of isoform per gene are outstanding features of A. crassicauda lncRNAs transcripts.

摘要

长非编码 RNA 调节邻近蛋白编码基因的潜在功能引起了科学家的关注。尽管 lncRNA 在生物过程中发挥着重要作用,但只有少数研究关注非模式动物的 lncRNA。在这项研究中,我们使用了严格的逐步筛选流程和基于机器学习的工具来鉴定特定的安德氏钝蝎 lncRNA,并分析预测的蝎 lncRNA 的特征。在 A. crassicauda 转录组中使用该流程检测到了 13401 个 lncRNA。Blast 结果表明,这些 lncRNA 序列的大多数(12642 个)在亲缘关系密切的物种中甚至没有可识别的直系同源物,被认为是新的 lncRNA。与 lncRNA 预测工具的比较表明,我们的流程是一种有用的方法,可以区分无参考基因组物种的 RNA 测序数据中的编码蛋白和非编码转录本。此外,分析 A. crassicauda 的 lncRNA 特征表明,较低的蛋白编码潜力、较低的 GC 含量、较短的转录长度和每个基因的异构体数量较少是 A. crassicauda lncRNA 转录本的突出特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6024/7907363/ba4f2c316933/41598_2021_83815_Fig1a_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验