Suppr超能文献

用于研究牙周炎的基因芯片分析的可靠性:来自不同平台的两个牙周炎队列数据集的低一致性及整合荟萃分析

Reliability of microarray analysis for studying periodontitis: low consistency in 2 periodontitis cohort data sets from different platforms and an integrative meta-analysis.

作者信息

Jeon Yoon Seon, Shivakumar Manu, Kim Dokyoon, Kim Chang Sung, Lee Jung Seok

机构信息

Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.

Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Periodontal Implant Sci. 2021 Feb;51(1):18-29. doi: 10.5051/jpis.2002120106.

Abstract

PURPOSE

The aim of this study was to compare the characteristic expression patterns of advanced periodontitis in 2 cohort data sets analyzed using different microarray platforms, and to identify differentially expressed genes (DEGs) through a meta-analysis of both data sets.

METHODS

Twenty-two patients for cohort 1 and 40 patients for cohort 2 were recruited with the same inclusion criteria. The 2 cohort groups were analyzed using different platforms: Illumina and Agilent. A meta-analysis was performed to increase reliability by removing statistical differences between platforms. An integrative meta-analysis based on an empirical Bayesian methodology (ComBat) was conducted. DEGs for the integrated data sets were identified using the package to adjust for age, sex, and platform and compared with the results for cohorts 1 and 2. Clustering and pathway analyses were also performed.

RESULTS

This study detected 557 and 246 DEGs in cohorts 1 and 2, respectively, with 146 and 42 significantly enriched gene ontology (GO) terms. Overlapping between cohorts 1 and 2 was present in 59 DEGs and 18 GO terms. However, only 6 genes from the top 30 enriched DEGs overlapped, and there were no overlapping GO terms in the top 30 enriched pathways. The integrative meta-analysis detected 34 DEGs, of which 10 overlapped in all the integrated data sets of cohorts 1 and 2.

CONCLUSIONS

The characteristic expression pattern differed between periodontitis and the healthy periodontium, but the consistency between the data sets from different cohorts and metadata was too low to suggest specific biomarkers for identifying periodontitis.

摘要

目的

本研究旨在比较使用不同微阵列平台分析的2个队列数据集中晚期牙周炎的特征性表达模式,并通过对两个数据集的荟萃分析来鉴定差异表达基因(DEG)。

方法

按照相同的纳入标准招募了队列1的22名患者和队列2的40名患者。使用不同平台对这2个队列组进行分析:Illumina和安捷伦。进行荟萃分析以消除平台间的统计差异,从而提高可靠性。基于经验贝叶斯方法(ComBat)进行综合荟萃分析。使用该软件包鉴定综合数据集的DEG,以调整年龄、性别和平台,并与队列1和队列2的结果进行比较。还进行了聚类和通路分析。

结果

本研究在队列1和队列2中分别检测到557个和246个DEG,分别有146个和42个基因本体(GO)术语显著富集。队列1和队列2之间有59个DEG和18个GO术语存在重叠。然而,在富集程度最高的前30个DEG中只有6个基因重叠,在富集程度最高的前30个通路中没有重叠的GO术语。综合荟萃分析检测到34个DEG,其中10个在队列1和队列2的所有综合数据集中重叠。

结论

牙周炎与健康牙周组织的特征性表达模式不同,但不同队列数据集与元数据之间的一致性过低,无法提示用于鉴定牙周炎的特定生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7d0/7920837/59c932014418/jpis-51-18-g001.jpg

相似文献

4
Identification of novel key lncRNAs involved in periodontitis by weighted gene co-expression network analysis.
J Periodontal Res. 2020 Jan;55(1):96-106. doi: 10.1111/jre.12693. Epub 2019 Sep 12.
6
Meta-Analysis of Microarray-Based Expression Profiles to Identify Differentially Expressed Genes in Intracranial Aneurysms.
World Neurosurg. 2017 Jan;97:661-668.e7. doi: 10.1016/j.wneu.2016.10.093. Epub 2016 Oct 27.
7
Network-based meta-analysis in the identification of biomarkers for papillary thyroid cancer.
Gene. 2018 Jun 30;661:160-168. doi: 10.1016/j.gene.2018.03.096. Epub 2018 Apr 3.

引用本文的文献

1
Differential gene expression and network analysis in head and neck squamous cell carcinoma.
Mol Cell Biochem. 2022 May;477(5):1361-1370. doi: 10.1007/s11010-022-04379-3. Epub 2022 Feb 10.

本文引用的文献

3
An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis.
J Clin Periodontol. 2019 Jan;46(1):6-11. doi: 10.1111/jcpe.13046.
5
Classification and diagnosis of aggressive periodontitis.
J Clin Periodontol. 2018 Jun;45 Suppl 20:S95-S111. doi: 10.1111/jcpe.12942.
6
Gene expression profiling of periodontitis-affected gingival tissue by spatial transcriptomics.
Sci Rep. 2018 Jun 19;8(1):9370. doi: 10.1038/s41598-018-27627-3.
9
Identification of Master Regulator Genes in Human Periodontitis.
J Dent Res. 2016 Aug;95(9):1010-7. doi: 10.1177/0022034516653588. Epub 2016 Jun 14.
10
Molecular aspects of the pathogenesis of periodontitis.
Periodontol 2000. 2015 Oct;69(1):7-17. doi: 10.1111/prd.12104.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验