Suppr超能文献

肿瘤学中的混合治愈模型:教程与实践指南

Mixture Cure Models in Oncology: A Tutorial and Practical Guidance.

作者信息

Felizzi Federico, Paracha Noman, Pöhlmann Johannes, Ray Joshua

机构信息

Value and Access and Commercial Development, Novartis Pharma AG, Fabrikstrasse 2, 4056, Basel, Switzerland.

Market Access Oncology, Bayer AG, Basel, Switzerland.

出版信息

Pharmacoecon Open. 2021 Jun;5(2):143-155. doi: 10.1007/s41669-021-00260-z. Epub 2021 Feb 26.

Abstract

Novel cancer therapies are associated with survival patterns that differ from established therapies, which may include survival curves that plateau after a certain follow-up time point. A fraction of the patient population is then considered statistically cured and subject to the same mortality experience as the cancer-free general population. Mixture cure models have been developed to account for this characteristic. As compared to standard survival analysis, mixture cure models can often lead to profoundly different estimates of long-term survival, required for health economic evaluations. This tutorial is designed as a practical introduction to mixture cure models. Step-by-step instructions are provided for the entire implementation workflow, i.e., from gathering and combining data from different sources to fitting models using maximum likelihood estimation and model results interpretation. Two mixture cure models were developed to illustrate (1) an "uninformed" approach where the cure fraction is estimated from trial data and (2) an "informed" approach where the cure fraction is obtained from an external source (e.g., real-world data) used as an input to the model. These models were implemented in the statistical software R, with the freely available code on GitHub. The cure fraction can be estimated as an output from ("uninformed" approach) or used as an input to ("informed" approach) a mixture cure model. Mixture cure models suggest presumed estimates of long-term survival proportions, especially in instances where some fraction of patients is expected to be statistically cured. While this type of model may initially seem complex, it is straightforward to use and interpret. Mixture cure models have the potential to improve the accuracy of survival estimates for treatments associated with statistical cure, and the present tutorial outlines the interpretation and implementation of mixture cure models in R. This type of model will likely become more widely used in health economic analyses as novel cancer therapies enter the market.

摘要

新型癌症疗法与既定疗法的生存模式不同,这可能包括在某个随访时间点后趋于平稳的生存曲线。然后,一部分患者群体在统计学上被视为治愈,其死亡率与无癌的普通人群相同。为了考虑这一特征,人们开发了混合治愈模型。与标准生存分析相比,混合治愈模型往往会导致对健康经济评估所需的长期生存的估计有很大差异。本教程旨在对混合治愈模型进行实际介绍。针对整个实施工作流程提供了逐步说明,即从收集和整合来自不同来源的数据,到使用最大似然估计拟合模型以及解释模型结果。开发了两种混合治愈模型来说明:(1)一种“无信息”方法,即从试验数据估计治愈比例;(2)一种“有信息”方法,即从外部来源(如真实世界数据)获得治愈比例,并将其用作模型的输入。这些模型在统计软件R中实现,代码可在GitHub上免费获取。治愈比例既可以作为(“无信息”方法)混合治愈模型的输出进行估计,也可以作为(“有信息”方法)混合治愈模型的输入。混合治愈模型给出了长期生存比例的推测估计,特别是在预计有一部分患者在统计学上会被治愈的情况下。虽然这类模型最初可能看起来很复杂,但使用和解释起来都很简单。混合治愈模型有可能提高与统计学治愈相关治疗的生存估计的准确性,本教程概述了R中混合治愈模型的解释和实施。随着新型癌症疗法进入市场,这类模型可能会在健康经济分析中得到更广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46ab/8160049/56674017409e/41669_2021_260_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验