Suppr超能文献

DFA-UNet:用于肺癌诊断中淋巴结分割的双流特征融合注意力U-Net

DFA-UNet: dual-stream feature-fusion attention U-Net for lymph node segmentation in lung cancer diagnosis.

作者信息

Zhou Qi, Zhou Yingwen, Hou Nailong, Zhang Yaxuan, Zhu Guanyu, Li Liang

机构信息

Department of Radiotherapy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.

School of Medical Imaging, Xuzhou Medical University, Xuzhou, China.

出版信息

Front Neurosci. 2024 Jul 15;18:1448294. doi: 10.3389/fnins.2024.1448294. eCollection 2024.

Abstract

In bronchial ultrasound elastography, accurately segmenting mediastinal lymph nodes is of great significance for diagnosing whether lung cancer has metastasized. However, due to the ill-defined margin of ultrasound images and the complexity of lymph node structure, accurate segmentation of fine contours is still challenging. Therefore, we propose a dual-stream feature-fusion attention U-Net (DFA-UNet). Firstly, a dual-stream encoder (DSE) is designed by combining ConvNext with a lightweight vision transformer (ViT) to extract the local information and global information of images; Secondly, we propose a hybrid attention module (HAM) at the bottleneck, which incorporates spatial and channel attention to optimize the features transmission process by optimizing high-dimensional features at the bottom of the network. Finally, the feature-enhanced residual decoder (FRD) is developed to improve the fusion of features obtained from the encoder and decoder, ensuring a more comprehensive integration. Extensive experiments on the ultrasound elasticity image dataset show the superiority of our DFA-UNet over 9 state-of-the-art image segmentation models. Additionally, visual analysis, ablation studies, and generalization assessments highlight the significant enhancement effects of DFA-UNet. Comprehensive experiments confirm the excellent segmentation effectiveness of the DFA-UNet combined attention mechanism for ultrasound images, underscoring its important significance for future research on medical images.

摘要

在支气管超声弹性成像中,准确分割纵隔淋巴结对于诊断肺癌是否转移具有重要意义。然而,由于超声图像边缘不清晰以及淋巴结结构复杂,精确分割精细轮廓仍然具有挑战性。因此,我们提出了一种双流特征融合注意力U-Net(DFA-UNet)。首先,通过将ConvNext与轻量级视觉Transformer(ViT)相结合来设计双流编码器(DSE),以提取图像的局部信息和全局信息;其次,我们在瓶颈处提出了一种混合注意力模块(HAM),它结合了空间注意力和通道注意力,通过优化网络底部的高维特征来优化特征传输过程。最后,开发了特征增强残差解码器(FRD),以改善从编码器和解码器获得的特征融合,确保更全面的整合。在超声弹性图像数据集上进行的大量实验表明,我们的DFA-UNet优于9种先进的图像分割模型。此外,视觉分析、消融研究和泛化评估突出了DFA-UNet的显著增强效果。综合实验证实了DFA-UNet联合注意力机制对超声图像具有出色的分割效果,强调了其对未来医学图像研究的重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b54/11284146/cc1607e7aea9/fnins-18-1448294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验