Truong Vi Khanh, Chapman James, Cozzolino Daniel
School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001 Australia.
Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072 Australia.
Food Anal Methods. 2021;14(7):1394-1401. doi: 10.1007/s12161-021-01994-6. Epub 2021 Feb 19.
Assessing and monitoring the growth and response of bacteria to antibiotics is of crucial importance in research laboratories, as well as in food, environment, medical, and pharmaceutical industrial applications. In this study, was chosen as the model microorganism to evaluate its response (e.g., growth) to a commercial antibiotic-tetracycline. Thus, the objective of this work was to explore the ability of NIR data combined with machine learning tools (e.g., partial least squares discriminant analysis) to monitor the response and growth of cultured with different concentrations of tetracycline (ranging from 0 to 50 μg/mL). This study demonstrated a novel method capable of analyzing samples of a complex matrix, while still contained in a 96-well plate. This work will pave the way as a new machine learning method to detect resistance changes in microorganisms without the laborious and, in some cases, time-consuming protocols currently in use in research and by the industry.
在研究实验室以及食品、环境、医疗和制药工业应用中,评估和监测细菌对抗生素的生长及反应至关重要。在本研究中,选择了[具体微生物名称未给出]作为模型微生物,以评估其对市售抗生素四环素的反应(如生长情况)。因此,本工作的目标是探索近红外(NIR)数据结合机器学习工具(如偏最小二乘判别分析)监测在不同浓度四环素(范围为0至50μg/mL)培养下[具体微生物名称未给出]的反应和生长的能力。本研究展示了一种能够分析复杂基质样品的新方法,而这些样品仍保存在96孔板中。这项工作将为一种新的机器学习方法铺平道路,该方法可检测微生物中的抗性变化,而无需目前研究和行业中使用的费力且在某些情况下耗时的方案。